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Abstract

We propose an approach to detect flying objects such as

UAVs and aircrafts when they occupy a small portion of the

field of view, possibly moving against complex backgrounds,

and are filmed by a camera that itself moves.

Solving such a difficult problem requires combining both

appearance and motion cues. To this end we propose a

regression-based approach to motion stabilization of local

image patches that allows us to achieve effective classifica-

tion on spatio-temporal image cubes and outperform state-

of-the-art techniques.

As the problem is relatively new, we collected two chal-

lenging datasets for UAVs and Aircrafts, which can be

used as benchmarks for flying objects detection and vision-

guided collision avoidance.

1. Introduction

We are headed for a world in which the skies are oc-

cupied not only by birds and planes but also by unmanned

drones ranging from relatively large Unmanned Aerial Ve-

hicles (UAVs) to much smaller consumer ones. Some of

these will be instrumented and able to communicate with

each other to avoid collisions but not all. Therefore, the

ability to use inexpensive and light sensors such as cameras

for collision-avoidance purposes will become increasingly

important.

This problem has been tackled successfully in the auto-

motive world and there are now commercial products [11,

18] designed to sense and avoid both pedestrians and other

cars. In the world of flying machines most of the progress is

achieved in the accurate position estimation and navigation

from single or multiple cameras [4, 16, 17, 10, 27, 15, 9],

while not so much is done in the field of visual-guided col-

lision avoidance [29]. On the other hand, it is not possible

to simply extend the algorithms used for pedestrian and au-

tomobile detection to the world of aircrafts and drones, as

flying object detection poses some unique challenges:

Figure 1: Detecting a small drone against a complex moving

background. (Left) It is almost invisible to the human eye

and hard to detect from a single image. (Right) Yet, our

algorithm can find it by using motion clues.

• The environment is fully 3D dimensional, which

makes the motions more complex.

• Flying objects have very diverse shapes and can be

seen against either the ground or the sky, which pro-

duces complex and changing backgrounds, as shown

in Fig. 1.

• Given the speeds involved, potentially dangerous ob-

jects must be detected when they are still far away,

which means they may still be very small in the im-

ages.

As a result, motion cues become crucial for detection. How-

ever, they are difficult to exploit when the images are ac-

quired by a moving camera and feature backgrounds that

are difficult to stabilize because they are non-planar and fast

changing. Furthermore, since there can be other moving ob-

jects in the scene, for example, the person in Fig. 1, motion

by itself is not enough and appearance must also be taken

into account. In these situations, state-of-the-art techniques

that rely on either image flow or background stabilization

lose much of their effectiveness.

In this paper, we detect whether an object of interest

is present and constitutes a danger by classifying 3D de-

scriptors computed from spatio-temporal image cubes. We

will refer to them as st-cubes. These st-cubes are formed

by stacking motion-stabilized image windows over several

consecutive frames, which gives more information than us-



ing a single image. What makes this approach both practical

and effective is a regression-based motion-stabilization al-

gorithm. Unlike those that rely on optical flow, it remains

effective even when the shape of the object to be detected is

blurry or barely visible, as illustrated by Fig. 2.

St-cubes of image intensities have been routinely used,

for action recognition purposes [6, 12, 26] using a single

fixed camera. In contrast, most current detection algorithms

work on a single frame, or integrate the information from

two of them, which might not be consecutive, by taking

into account optical flow from one frame to another. Our

approach can therefore be seen as a way to combine both

the appearance and motion information to achieve effective

detection in a very challenging context.

2. Related work

Approaches to detecting moving objects can be classified

into three main categories, those that rely on appearance in

individual frames, those that rely primarily on motion in-

formation across frames, and those that combine the two.

We briefly review all three types in this section. In the re-

sults section, we will demonstrate that we can outperform

state-of-the-art representatives of each.

Appearance-based methods rely on Machine Learning

and have proved to be powerful even in the presence of

complex lighting variations or cluttered background. They

are typically based on Deformable Part Models (DPM) [8],

Convolutional Neural Networks (CNN) [21] and Random

Forests [1]. We will evaluate our approach in comparison

with all of these methods and the another, which relies on

an Aggregate Channel Features (ACF) [7], as it is widely

considered to be among the best.

However, they work best when the target objects are

sufficiently large and clearly visible in individual images,

which is often not the case in our applications. For exam-

ple, in the image of Fig. 1, the object is small and it is al-

most impossible to make out from the background without

motion cues.

Motion-based approaches can themselves be subdi-

vided into two subclasses. The first comprises those that

rely on background subtraction [19, 22, 23] and detect ob-

jects as groups of pixels that are different from the back-

ground. The second includes those that depend on optical

flow between consecutive images [3, 14]. Background sub-

traction works best when the camera is static or its motion

is small enough to be easily compensated for, which is not

the case for the on-board camera of a fast moving vehicle.

Flow-based methods are more reliable in such situations but

are critically dependent on the quality of the flow vectors,

which tends to be low when the target objects are small and

blurry.

Hybrid approaches combine information about object

appearance and motion patterns and are therefore closest

in spirit to what we propose. For example, in [25], his-

tograms of flow vectors are used as features in conjunction

with more standard appearance features and fed to a statis-

tical learning method. This approach was refined in [20]

by first aligning the patches to compensate for motion and

then using the differences of frames that may or may not

be consecutive as additional features. The alignment relies

on the Lucas-Kanade optical flow algorithm [14]. The re-

sulting algorithm works very well for pedestrian detection

and outperforms most of the single-frame ones. However

when the target objects become smaller and harder to see,

the flow estimates become unreliable and this approach, like

the purely flow-based ones, becomes less effective.

3. Approach

In this section, we first introduce a basic approach to us-

ing st-cubes, that is, blocks of consecutive frames, for object

detection without first correcting for motion. We then intro-

duce our regression-based approach to motion stabilization.

We will demonstrate in the result section that it brings a

substantial performance improvement.

3.1. Detection without Motion Stabilization

Let sx and sy be spatial, and st be temporal dimensions

of a st-cube such as those depicted by Fig. 3. We use a train-

ing set of pairs (bi, yi), i ∈ [1, N ], where bi ∈ Rsx×sy×st

is a st-cube and the label yi ∈ [−1, 1] indicates whether or

not it contains a target object. We then train an AdaBoost

classifier:

F : Rsx×sy×st
→ [0, 1], F (b) =

T

Σ
j=1

αjfj(b) (1)

where the αj are learned weights and T is the number of

weak classifiers fj learned by the algorithm. We use fj of

the form

fR,o,τ (b) =

{

1 if E(b, R, o) > τ,

0 otherwise.
(2)

These weak learners are parametrized by a box R within b,

an orientation o and a threshold τ . E(b, R, o) is the normal-

ized image gradient energy at orientation o over the region

R [13].

As a potential alternative to these image features, we

tested a 3D version of the HOG detector as in [26]. How-

ever, we found that its performance depends critically on the

size of the bins used to compute it. In practice, we found it

difficult to find sizes that consistently gave good results for

objects whose apparent shape can change dramatically. The

AdaBoost procedure solves this problem by automatically

selecting an appropriate range of sizes of the boxes R of

Eq. 2.

One problem the AdaBoost procedure does not address,

however, is that the orientations of the gradients are biased
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Figure 2: Compensation for the apparent motion of different flying objects inside the st-cube allows to decrease in-class

variation of the data, used by the machine learning algorithms. For each st-cube, we also provide three graphs: The blue dots

in the first graph indicate the locations of the center of the drone throughout the st-cube, the red cross indicates the patch

center. The next two graphs plot the variations of the x and y coordinates of the center of the drone respectively, compared to

the position of the center of the patch. We can see that our method keeps the drone close to the center even for complicated

backgrounds and when the drone is barely recognizable as in the right column.

mUAVs Aircrafts

Figure 3: Sample patches of the mUAVs and aircrafts. Each

column corresponds to a single st-cube and illustrates one

kind from the variety of possible motions that an aircraft

could have.

by the global object motion and that this bias is indepen-

dent of object appearance. This makes the learning task

much more difficult and motion stabilization is required to

eliminate this problem.

3.2. Object­Centric Motion Stabilization

The best way to avoid the above-mentioned bias is to

guarantee that the target object, if present in an st-cube, re-

mains at the center of all spatial slices.

More specifically, let It denote the tth frame of the video

sequence. If we do not compensate for the motion, we can

define the st-cube bi,j,t as the 3-D array of pixel intensities

from Iz, z ∈ [t − st + 1, t] at image locations (k, l), k ∈

[i−sx+1, i], l ∈ [j−sy+1, j], as depicted by Fig. 3. Given

these notations, correcting for motion can be formulated as

allowing the st spatial slices mi,j,z, z ∈ [t − st + 1, t] to

shift horizontally and vertically in individual images.

In [20], these shifts are computed using flow informa-

tion, which has been shown to be effective in the case of

pedestrians who occupy a large fraction of the image and

move relatively slowly from one frame to the next. How-

ever, as can be seen in Fig. 3 these assumptions do not hold

in our case and we will show in the result section that this

negatively impacts the performance.

To overcome this difficulty, we introduce instead a

regression-based approach to compensate for motion and

keep the object in the center of the mi,j,z spatial slices even

when the target object’s appearance changes drastically.



Training the regressors We propose to train two boosted

trees regressors [24], one for horizontal motion of the air-

craft and one for its vertical motion. The power of this

method is that it does not use the similarity between con-

secutive frames, and is able to predict how far the object

is from the center in the horizontal or vertical directions,

based just on a single patch.

We use gradient boosting [28] to learn regression mod-

els for vertical φv(·) and horizontal motion φh(·). Each

of these models φ∗ : Rsx×sy → R can be represented in

the form φ∗(m) = ΣT
j=1 αjhj(m), where αj=1..T are real

valued weights, hj : Rsx×sy → R are weak learners and

m ∈ R
n is the input patch. The GradientBoost approach

can be seen as extension of the classic AdaBoost algorithm

to real-valued weak learners and more general loss func-

tions.

As typically done with gradient boosting we use re-

gression trees hj(m) = T (θj , HoG(m)) as weak learn-

ers for this approach, where θj denotes the tree parameters.

HoG(m) denotes the Histograms of Gradients for patch m.

At every iteration j the boosting approach finds the weak

learner hj(·) that minimises the quadratic loss function

hj(·) = argmin
h(·)

(

N

Σ
i=1

w
j
i (h(xi)− ri)

2

)

, (3)

where N is the number of training samples mi with their

expected responses ri. Weights w
j
i are estimated at every

iteration, by differentiating the loss function.

We used the HoG(·) representation for the patches

mi=1..N because it is fast to compute and proved to be ro-

bust to illumination changes in many applications. There-

fore the regressor is able to perform in the outdoor envi-

ronments, where illumination can significantly change from

one part of the video sequence to another.

Motion compensation with regression After both re-

gressors for horizontal and vertical motions are trained, we

use them to compensate for the motion of the aircraft inside

the st-cube bi,j,t in an iterative way. Algorithm 1 outlines

the main steps the motion compensation approach takes to

estimate and correct for the shift of the aircraft. The result-

ing st-cube keeps the aircraft close to the center throughout

the whole sequence of patches mk=1..st of bi,j,t. This ap-

proach provides not only a better prediction, but also allows

to estimate the direction of motion of the aircraft and its

speed, provided the frame-rate of the camera and the size

of the target object are known. This additional information

may be used by various tracking algorithms to improve their

performance.

Fig. 2 show examples of st-cubes before and after motion

compensation for different flying objects. For each of the

st-cubes b and for each patch mk=1..st inside b we plot the

Algorithm 1 Regression based motion compensation.

Input

1. regressors φh(·), φv(·) for horizontal and vertical

motion respectively

2. st-cube bi,j,t with dimensions sx, sy, st
3. frames Ip, p ∈ [t− st + 1, t] of the video sequence

set ǫ = 1
for mk, k ∈ [1, st] do

set n = 1, (i0, j0) = (0, 0) and (i1, j1) = (i, j)

as it was previously defined, we refer to mk as the

patch of the st-cube and to mi,j,p, p = k+ t−st as the

patch extracted from the Ip at the position (i, j), so at

the first iteration mk = mi1,j1,p

while
(

(in − in−1)
2 + (jn − jn−1)

2
)

< ǫ do

n = n+ 1
(shh, shv) = (φh(mp), φv(mp))
(in, jn) = (in−1 − shv, jn−1 − shh)
mk = min,jn,p

end while

end for

position of the actual center of the flying object with respect

to the center of the patch.

We can see from these examples that the optical flow ap-

proach is more focused on the background, as in the case

where the background is not uniform, the positions of the

drone over the patches are spread across the patch. How-

ever, in the case of our regression-based motion compen-

sation the center positions of the drone are located close

to each other and to the center of the patch. Moreover if

the appearance of the drone changes inside the st-cube (e.g.

due to the lighting changes) optical flow based method is

unable to correctly estimate the shift of the object. On the

other hand our regression approach is capable of identify-

ing the correct shift even in the situations when the outlines

of the object are heavily corrupted by noise, coming from

the background. Fig. 2 illustrates this fact for different fly-

ing objects and various background complexity levels. Note

also that our regressor generalizes well to different objects

that were not used for training.

Provided regressors are estimated, we use them for mo-

tion compensation of the flying objects inside the st-cubes

of the training dataset. This allows us to train the AdaBoost

classifier from Eq. 1, on the data with much less in-class

variation and thus it is easier for the machine learning algo-

rithm to fit a proper model to it.



Background subtraction

Optical flow

Our approach

UAV dataset Aircraft dataset

Figure 4: Comparison of our approach with motion-based methods. First row: Using a state-of-the art subtraction algo-

rithm [22] is not sufficient to detect the target objects as the camera is moving and the background can vary because of trees

and grass moving with the wind. The UAV is detected only in one image, together with a false detection. The plane is detected

in only one image as well, together with large errors. Second row: The task is also very difficult for a state-of-the-art optical

flow approach [3]. The UAV is not revealed in the optical flow images, the plane is visible in only two of them. Bottom row:

Our detector can detect the target objects by relying on motion and appearance. (best seen in color)

(a) UAV dataset (b) Aircraft dataset

Figure 5: Sample image windows containing aircrafts or

UAVs from our datasets.

4. Results

In this section, we evaluate the performance of our ap-

proach against state-of-the-art ones [7, 20] on two challeng-

ing datasets. They include many real-world challenges such

as fast illumination changes and complex backgrounds, cre-

ated by moving treetops seen against a changing sky. They

are as follows:

• UAV dataset It comprises 20 video sequences of 4000

752×480 frames each on average. They were acquired

by a camera mounted on a drone filming similar ones

while flying outdoors. These video sequences contain

up to two objects of the same model per frame. How-

ever the shape of the drones is rarely perfectly visible

and thus their appearance is extremely variable due to

changing attitudes, lighting conditions, and even alias-

ing and saturation due to their small apparent sizes.

Fig. 5(a) illustrates some examples of the variety of

appearance a drone could take in this dataset. More-

over we recorded videos in various indoor and outdoor

environments and different lighting and weather con-

ditions.

• Aircraft dataset It consists of 20 YouTube videos of

planes or radio controlled plane-like drones. Some

videos were acquired by a camera on the ground and

the rest was filmed by a camera on board of an air-

craft. These videos vary in length from hundreds to

thousands of frames and in resolution from 640× 480
to 1280 × 720. Fig. 5(b) depicts the variety of plane

types that can be seen in them.

These datasets, together with the ground-truth annotations,

are publicly available as a new challenging benchmark for

aerial objects detection and visual-guided collision avoid-

ance under the following link: http://cvlab.epfl.

ch/research/unmanned/detection.

4.1. Training and Testing

In all cases we used half of the data to train both the

regressor of Eq. 3 and the classifier of Eq. 1. We manually

supplied 8000 bounding boxes centered on a UAV and 4000

on a plane.

Training the Regressors To provide labeled examples,

where the aircraft or UAV is not in the center of the patch

but still at least partially within it, we randomly shifted the

manually supplied bounding boxes by distances of up to

half of their size. This step is repeated for every second

http://cvlab.epfl.ch/research/unmanned/detection
http://cvlab.epfl.ch/research/unmanned/detection


frame of the training database to cover the variety of shapes

and backgrounds in front of which the aircraft might appear.

The apparent size of the objects in the UAV and Aircraft

datasets vary from 10 to 100 pixels on the image plane. To

train the regressor, we used 40× 40 patches containing the

UAV or aircraft shifted from the center. We have chosen this

size because smaller ones will result in fewer features avail-

able for gradient boosting, while bigger ones will introduce

noise and take more time to analyze. We detect the targets

at different scales by running the detector on the image at

different resolutions.

Training the Classifiers We used the st-cubes of size

(sx, sy, sz) = (40, 40, 4), the spatial dimensions being the

same as for regression. The choice of sz = 4 represents a

compromise between being able to detect far away objects

by increasing sz and closer ones that require a smaller sz
because the frame-to-frame motion might be too big for our

motion-compensation mechanism.

Evaluation Metric We report precision-recall curves.

Precision is computed as the number of true positives, de-

tected by the algorithm divided by the total number of detec-

tions. Recall is the number of true positives divided by the

number of the positively labeled test examples. Addition-

ally we use the Average Precision (AveP) measure, which

we take to be the integral
∫ 1

0
p(r)dr, where p is the preci-

sion, and r the recall.

4.2. Baselines

To demonstrate the effectiveness of our approach, we

compare it against state-of-the-art algorithms. We chose

them to be representative of the three different ways the

problem of detecting small moving objects can be ap-

proached, as discussed in Section 2.

• Appearance-Based Approaches that rely on detec-

tion in individual frames. We will compare against De-

formable Part Models (DPM) [8], Convolutional Neu-

ral Networks (CNN) [21], Random Forests [2], and

Aggregate Channel Features method (ACF) [7], the

latter being widely considered to be among the best.

Since our algorithm labels st-cubes as positive or neg-

ative, for a fair comparison with these single frame al-

gorithms, we proceed as follows. If they label the mid-

dle frame of the cube as positive, then the whole st-

cube is regarded as a positive detection and otherwise

not. We tried averaging over the labels of the set of

frames in the st-cube, but it resulted in lower accuracy,

because detectors tend to always give a higher score to

the middle frame, for which the object appears to be in

the center of the patch.

UAV dataset Aircraft dataset

Figure 6: Comparison against apperance-based approaches.

For both the UAV and Aircraft datasets, our approach

achieves about a 10% increase of performance compared

to the state-of-the-art ACF method.

Average Precision

Method UAV dataset Aircraft dataset

DPM [8] 0.573 0.470

CNN [21] 0.504 0.547

Random Forests [2] 0.618 0.563

ACF [7] 0.652 0.648

St-cubes without
0.485 0.497

motion compensation

St-cubes+optical flow 0.540 0.652

Park [20] 0.568 0.705

Our 0.751 0.789

Table 1: Average precision of detection methods on our

datasets. We can see that in both cases our approach with

regression-based motion compensation is able to outper-

form both purely appearance based methods and state-of-

the-art hybrid approach.

• Motion-based Approaches do not use any appear-

ance information and rely purely on the correct es-

timation of the background motion. Among those

we experimented with MultiCue background subtrac-

tion [22, 23] and large displacement optical flow [3].

• Hybrid approaches are closest in spirit to ours and

correct for motion using image-flow. Among those,

the one presented in [20] is the most recent one we

know of and the one we compare against. To ensure

fair comparison, we used the same size st-cubes for

both.

For all the motion-based (background subtraction, op-

tical flow) and single-frame-based (DPM, CNN, Random

Forests, ACF) methods the code was downloaded from pub-

licly available sources. For ACF and Random forests, we



used Piotr Dollar’s toolbox [5] and [24] respectively. The

DPM implementation is publicly available. We also used

the open source BGSLibrary [23] for state-of-the-art back-

ground subtraction algorithms. For the methods above we

used default configurations of parameters. For the Random

Forest we tried varying the number of trees.

For [20] we did not find any publicly available imple-

mentation and reimplemented it ourselves, based on the pa-

per. We then used the same video sequences to train all the

methods.

4.3. Evaluation against Competing Approaches

Here we compare our regression-based approach against

the three classes of methods discussed above.

Appearance-Based Methods. Fig. 6 compares our

method with appearance-based approaches on our two

datasets. Table 1 summarizes the results in terms of Av-

erage Precision. For both the UAV and Aircraft datasets we

can achieve on average around 10% improvement, in terms

of this measure, over the ACF method, which itself outper-

forms the others. The DPM and CNN methods perform the

worst on average. Most likely, this happens because the first

one depends on using the correct size of the bins for HoG

estimation, which makes it hard to generalize for a large

variety of flying objects and the second one requires much

more training samples than our detector does.

Motion-Based Methods. Fig. 4 shows that state-of-the-

art background subtraction [22] and optical flow computa-

tion [3] do not work well enough for detecting UAVs or

planes in the challenging conditions that we consider.

We do not provide precision-recall curves for motion-

based methods because it it not clear how big the moving

part of the frame should be to be considered as an aircraft.

We have tested several potential sizes and the average pre-

cision was much lower than those in Table 1 in all cases.

Motion compensation approaches. Fig. 7 compares our

motion compensation algorithm with the optical flow-based

one used in [20] for both UAV and Aircraft datasets. Using

motion compensation for alignment of the st-cubes results

into higher performance of the detectors, as the in-class

variation of the data is decreased. Table 1 shows that we

can achieve at least 15% improvement in average precision

on both datasets using our motion compensation algorithm.

Among the motion compensation approaches our

regression-based method outperforms the optical flow-

based one of [20], because it is able to correctly compensate

for the mUAV motion even in the cases where the back-

ground is complex and the drone might not be visible even

to the human eye. Fig. 2(b,d) illustrates this hard situation

(a) UAV dataset (b) Aircraft dataset

Figure 7: Evaluation of the motion compensation meth-

ods on our datasets. Unlike other motion compensation al-

gorithms, our regression-based method is able to properly

identify the shift in object position and correct for it, even

in the situation, when the background is complex and the

outlines of the object are barely visible, which leads to sig-

nificant improvement in the detection accuracy.

with an example. On the contrary, the optical flow method

is more focused on the background, which decreases its per-

formance. Fig. 2(b) shows an example of a relatively easy

situation, when the aircraft is clearly visible, but the opti-

cal flow algorithm fails to correctly compensate for its shift

from the center, while our regression-based approach suc-

ceeds.

Our regression-based motion compensation algorithm

allows us to significantly reduce the in-class variation of the

data, which results into 30% boost in performance, as given

by the Average precision measure.

Hybrid approaches. Fig. 8 illustrates the comparison

of our method to the hybrid approach [20], which relies

on motion compensation using Lucas-Kanade optical flow

method, and yields state-of-the-art performance for pedes-

trian detection. For both UAV and Aircraft datasets our

method is able to achieve higher performance, due to our

regression-based approach for compensating motion that al-

lows to properly identify and correct for the shift of the air-

craft inside the block of patches, used for detection.

4.4. Collision Courses

Detecting another aircraft on a potential collision course

is an important sub-case of the more generic detection prob-

lem we are addressing in this paper. As shown in Fig. 9(b),

the hallmark of a collision course is that the object on such

a course is always seen at a constant angle and that its size

increases slowly, at least at first.

This means that motion stabilization is less important in

this case and that the temporal gradients have a specific dis-

tribution. In other words, the in-class variation for the posi-



(a) UAV dataset (b) Aircraft dataset

Figure 8: Comparison of our approach to the hybrid method

(Park). Our method is able to show higher performance

for both of the datasets, due to the regression-based motion

compensation algorithm used.

Figure 9: Collision courses. (Left) The apparent size of a

standard glider and its 15 m wingspan flying towards an-

other aircraft at a relatively slow speed (100 km/h) is very

small 33s before impact, but the glider completely fills the

field of view only half a minute later, 3s before impact.

(Right) An aircraft on a collision course is seen in a con-

stant direction but its apparent size grows, slowly at first

and then faster.

tive examples should be much smaller in this scenario than

in the general case and could be potentially be captured by

a 3D HoG descriptor [26]. This gives us a good way to test

whether our motion-stabilization mechanism negatively im-

pacts performance in this specific case, as do most mecha-

nisms that enforce invariance when such invariance is not

required.

To this end, we therefore searched YouTube for a set of

video sequences in which airplanes appear to be on a col-

lision course for substantial amount of time. We selected

14 videos that vary in length from tens to several hundreds

of frames. As before, we used half of them for training the

collision course detector and the other to test it. In Fig. 10,

we compare our results against those obtained using clas-

sification based on a 3D HoG descriptor [26] without mo-

tion compensation, as suggested above. As expected, even

though it did not perform very well in the general case, it

turns out to be very effective in this specific scenario. Our

approach is very slightly less precise, which reflects the

phenomenon discussed above.

Furthermore, the curve at the top of Fig. 10 shows that

it is only when the aircraft is either very small in the im-

AveP
Detector: (Average Precision)

3D HOG 0.907

Our 0.904

Figure 10: Performance for aircrafts on a collision course.

(Top) Distribution of the average precision we can achieve

as a function of the size of the aircraft in the video frame. It

is close to 100% for sizes between 35 pixels and 75 pixels,

which translates to a useful range of distances for collision

avoidance purposes. (Bottom) The Average Precision of our

method compared to using a 3D HOG detector.

age (< 30 pixels) or very close that the average precision

of our detector slightly decreases. In the first case, this hap-

pens because the object is too far and the increase of its

apparent size is hardly perceptible. In the second case, the

appearance changes very significantly for different types of

aircrafts, which harms performance. However the goal of a

collision avoidance system is to avoid these kinds of situa-

tions and to detect the aircraft at a safe distance. We can see

that our approach allows us to achieve close to 100% per-

formance within a large range and could therefore be used

for this purpose.

5. Conclusion

We showed that temporal information from a sequence

of frames plays a vital role in detection of small fast mov-

ing objects like UAVs or aircrafts in complex outdoor envi-

ronments. We therefore developed an object-centric motion

compensation approach that is robust to changes of the ap-

pearances of both the object and the background. This ap-

proach allows us to outperform state-of-the-art techniques

on two challenging datasets. Motion information provided

by our method has a variety of applications, from detection

of potential collision situations to improvement of vision-

guided tracking algorithms.

We collected two challenging datasets for UAVs and Air-

crafts. These datasets can be used as a new benchmark

for flying objects detection and visual-based aerial collision

avoidance.
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