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Detecting Flying Objects using a Single Moving
Camera

Artem Rozantsev, Vincent Lepetit, and Pascal Fua, Fellow, IEEE,

Abstract—We propose an approach for detecting flying objects such as Unmanned Aerial Vehicles (UAVs) and aircrafts when they

occupy a small portion of the field of view, possibly moving against complex backgrounds, and are filmed by a camera that itself moves.

We argue that solving such a difficult problem requires combining both appearance and motion cues. To this end we propose a

regression-based approach for object-centric motion stabilization of image patches that allows us to achieve effective classification on

spatio-temporal image cubes and outperform state-of-the-art techniques.

As this problem has not yet been extensively studied, no test datasets are publicly available. We therefore built our own, both for UAVs

and aircrafts, and will make them publicly available so they can be used to benchmark future flying object detection and collision

avoidance algorithms.

Index Terms—Motion compensation, object detection.
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1 INTRODUCTION

We are headed for a world in which the skies are occupied not

only by birds and planes but also by unmanned drones ranging

from relatively large Unmanned Aerial Vehicles (UAVs) to much

smaller consumer ones. Some of these will be instrumented and

able to communicate with each other to avoid collisions but not

all. Therefore, the ability to use inexpensive and light sensors

such as cameras for collision-avoidance purposes will become

increasingly important.

This problem has been tackled successfully in the automotive

world, for example there are now commercial products [1], [2]

designed to sense and avoid both pedestrians and other cars.

In the world of flying machines much progress has been made

towards accurate position estimation and navigation from single

or multiple cameras [3], [4], [5], [6], [7], [8], [9], but less in the

field of visual-guided collision avoidance [10]. In particular, it is

not possible to simply extend the algorithms used for pedestrian

and automobile detection to the world of aircrafts and drones, as

flying object detection poses some unique challenges:

• The environment is fully three dimensional, which makes

the motions more complex (e.g., objects may move in any

direction in the 3D space and may appear in any part of the

frame).

• Flying objects have very diverse shapes and can be seen

against either the ground or the sky, which produces complex

and changing backgrounds.

• Given the speeds involved, potentially dangerous objects

must be detected when they are still far away, which means

they may be very small in the images.
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Figure 1: Detecting a small flying object against a complex moving

background. (Left) It is almost invisible to the human eye and hard

to detect from a single image. (Right) Yet, our algorithm can find

it by using appearance and motion cues.

Fig. 1 illustrates some examples, where even for humans it is hard

to find a flying object based just on a single image. By contrast,

when looking at the sequence of frames, these objects suddenly

pop up and are easily spotted, which suggests that motion cues are

crucial for detection.

However, these motion cues are difficult to exploit when the

images are acquired by a moving camera and feature backgrounds

that are challenging to stabilize because they are non-planar and

rapidly changing. Furthermore, since there may be other moving

objects in the scene, such as a person in the top row of Fig. 1,

motion by itself is not enough and appearance must also be taken

into account.

In this paper, we detect whether an object of interest is present

and constitutes danger by classifying 3D descriptors computed

from spatio-temporal image cubes. We will refer to them as
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Figure 2: Motion compensation for four different st-cubes of flying objects seen against different backgrounds. (Top) For each one, we

show four consecutive patches before motion stabilization. In the leftmost plot below the patches, the blue dots denote the location of

the true center of the drone and the red cross is the patch center over time. The other two plots depict the x and y deviations of the drone

center with respect to the patch center. (Middle) The same four st-cubes and corresponding graphs after motion compensation using

an optical flow approach, as suggested by [11]. (Bottom) The same four st-cubes and corresponding graphs after motion compensation

using our approach.

st-cubes. They are formed by stacking motion-stabilized image

windows over several consecutive frames, which give more infor-

mation than using a single image. What makes this approach both

practical and effective is a regression-based motion-stabilization

algorithm. Unlike those relying on optical flow, it remains effective

even when the shape of the object to be detected is blurry or

barely visible, as illustrated by Fig. 2. This arises from the fact

that learning-based motion compensation focuses on the object

and is more resistant to complicated backgrounds, compared to

the optical flow method as shown in Fig. 2.

St-cubes have been routinely used for action recognition pur-

poses [12], [13], [14] using a monocular camera. By contrast, most

current detection algorithms work either on a single frame, or by

estimating the optical flow from consecutive frames. Our approach

can therefore be seen as a way to combine both the appearance

and motion information to achieve effective detection in a very

challenging context. In our experiments we show that this method

allows to achieve higher accuracy, comparing to either appearance

or motion-based methods individually.

We first proposed using st-cubes for flying objects detection

in an earlier conference paper [15]. In this initial version of our

processing pipeline, we performed motion compensation using

boosted trees. In this paper we refine this idea by using deep

learning techniques that yield better stabilization and, thus, better

overall performance.

2 RELATED WORK

Approaches for detecting moving objects can be classified into

three main categories: those that rely on appearance in individual

frames, those that rely primarily on motion information across

frames, and those that combine the two. We briefly review all three

types in this section. In the results section, we will demonstrate

that we can outperform state-of-the-art representatives of each

class.

Appearance-based methods rely on Machine Learning and

have proved to be powerful even in the presence of complex

lighting variations or cluttered background. They are typically

based on Deformable Part Models (DPM) [16], Convolutional

Neural Networks (CNN) [17], or Random Forests [18]. Among

them the Aggregate Channel Features (ACF) [19] algorithm is

considered as one of the best.

These approaches work best when the target objects are

sufficiently large and clearly visible in individual images, which is

often not the case in our applications. For example, in the images

of Fig. 1, the object is small and it is almost impossible to make

out from the background without motion cues.

Motion-based approaches can themselves be subdivided into

two subclasses. The first comprises those that rely on background

subtraction [20], [21], [22], [23] and determine objects as groups

of pixels that are different from the background. The second

includes those that depend on optical flow [24], [25], [26].

Background subtraction works best when the camera is static

or its motion is small enough to be easily compensated for, which

is not the case for the on-board camera of a fast moving aircraft.

Flow-based methods are more reliable in such situations but

still critically dependent on the quality of the flow vectors, which

tends to be low when the target objects are small and blurry. Some

methods combine both optical flow and background subtraction

algorithms [27], [28]. However, in our case there may be motion
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Figure 3: Object detection pipeline with st-cubes and motion compensation. Provided a set of video frames from the camera, we use a

multi-scale sliding window approach to extract st-cubes. We than process every patch of the st-cube to compensate for the motion of

the aircraft and then run the detector. (best seen in color)

in different parts of the images, for example people or tree

tops. Thus motion information is not enough for reliable flying

object detection. Other methods that combine optical flow and

background subtraction, such as [29], [30], [31], [32] still critically

depend on optical flow, which is often estimated with [26] and thus

may suffer from the low quality of the flow vectors. In addition to

optical flow dependence, [31] makes an assumption that camera

motion is translational, which is violated in aerial videos.

Hybrid approaches combine information about object ap-

pearance and motion patterns and are therefore the closest in spirit

to what we propose. For example, in [33], histograms of flow

vectors are used as features in conjunction with more standard

appearance features and are fed to a statistical learning method.

This approach was refined in [11] by first aligning the patches

to compensate for motion and then using the differences of the

frames, which may or may not be consecutive, as additional

features. The alignment relies on the Lucas-Kanade optical flow

algorithm [25]. The resulting algorithm works very well for pedes-

trian detection and outperforms most of the single-frame methods.

However, when the target objects become smaller and harder to

see, the flow estimates become unreliable and this approach, like

the purely flow-based ones, becomes less effective.

3 DETECTION FRAMEWORK

Our detection pipeline is illustrated by Fig. 3 and comprises the

following steps:

• Divide the video sequence into N -frame overlapping tempo-

ral slices. The larger the overlap is, the higher the precision

but only up to a point. Our experiments show that making the

overlap more than 50% increases computation time without

improving performance. Thus, 50% is what we used.

• Build st-cubes from each slice using a sliding window ap-

proach, independently at each scale.

• Apply our motion compensation algorithm to the patches of

each of the st-cubes to create stabilized st-cubes.

• Classify each st-cube as containing an object of interest or

not.

• Since each scale has been processed independently, we per-

form non-maximum suppression in scale space. If there are

several detections for the same spatial location at different

scales, we only retain the highest-scoring one. As an alter-

native to this simple scheme, we have developed a more

sophisticated learning-based one, which we discuss in more

details in Section 6.4.

In this section, we introduce two separate approaches—one

based on boosted trees, the other one on Convolutional Neural

Networks—to deciding whether or not an st-cube contains a target

object and will compare their respective performance in Section 5.

We will discuss motion compensation in Section 4.

More specifically, we want to train a classifier that takes as

input st-cubes such as those depicted by Fig. 4 and returns 1 or

-1, depending on the presence or absence of a flying object. Let

(sx, sy, st) be the size of our st-cubes. For training purposes, we

use a dataset of pairs (bi, yi), i ∈ [1, N ], where bi ∈ R
sx×sy×st

is an st-cube, in other words st image patches of resolution sx×sy
pixels. Label yi ∈ {−1, 1} indicates whether or not a target object

is present.

3.1 3D HoG with Gradient Boost

The first approach we tested relies on boosted trees [34] to learn

a classifier ψ(·) of the the form ψ(b) = ΣHj=1 αjhj(b), where

αj=1..H are real valued weights, b ∈ R
sx×sy×st is the input st-

cube, hj : R
sx×sy×st → R are weak learners, and H is the

number of selected weak learners, which controls the complexity

of the classifier. The α’s and h’s are learned in a greedy manner,

using the Gradient Boost algorithm [34], which can be seen as

an extension of the classic AdaBoost to real-valued weak learners

and more general loss functions.

In standard Gradient Boost fashion, we take our weak learners

to be regression trees hj(b) = T (θj ,HoG3D(b)), where θj
denotes the tree parameters and HoG3D(b), the 3-dimensional

Histograms of Gradients (HoG3D) computed for b. HoG3D was

introduced in [14], and can be seen as an extension of the standard

HoG [35] with an additional temporal dimension. It is fast to

compute and proved to be robust to illumination changes in many

applications, and allows us to combine appearance and motion

efficiently.

At each iteration j, the weak learner hj(·) with the cor-

responding weight αj is taken as the one that minimizes the

exponential loss function:

(hj(.), αj) = argmin
h(.),α

N
∑

i=1

e−y(ψj−1(bi)+αh(bi)) . (1)

The tests in the nodes of the trees compare one coordinate of

the HoG3D vector with a threshold, both selected during the

optimization.

3.2 Convolutional Neural Networks

Since Convolutional Neural Networks (CNN) [36] have proved

very successful in many detection problems, we have tested it

as an alternative classification method. We use the architecture

depicted by Fig. 5, which alternates convolutional layers and
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Figure 4: Sample patches of the UAVs and aircrafts. Each row

corresponds to a single st-cube and illustrates different possible

motions that an aircraft could have.

pooling layers. Convolutional layers use 3D linear filters while

pooling layers apply max-pooling in 2D spatial regions only. The

last layer is fully connected and outputs the probability that the

input st-cube contains an object of interest. We use the hyperbolic

tangent function as the non-linear operator [37].

We take the input of our CNN is a normalized st-cube

η =
b− µ(b)

σ(b)
, (2)

where µ(b) and σ(b) are the mean and standard deviation of the

pixel intensities in b, respectively. Normalization is an important

step because network parameters optimization fails to converge

when using raw image intensities.

During training, we write the probability that an st-cube η
contains an object of interest (y = 1) or is a part of the background

(y = 0) as

P (Y = y | η) =
eCNN(η)[y]

eCNN(η)[0] + eCNN(η)[1]
, y = {0, 1} , (3)

where CNN(η)[y] denotes the classification score that the network

predicts for η as being part of class y and e(·) denotes the expo-

nential function. We then minimize the negative log-likelihood

L(W, bias) = −
N
∑

k=1

logP (Y = yk | ηk) (4)

with respect to the CNN parameters. Here (ηk, yk) are pairs

of normalized st-cubes and their corresponding labels from the

training dataset, as defined in Section 3. To this end, we use

the algorithm of [38] combined with Dropout [39] to improve

generalization.

We tried many different network configurations, in terms of

the number of filters per layer and the size of the filters. However,

they all yield similar performance, which suggests that only

minor improvements could be obtained by further tweaking the

network. We also tried varying the dimensions of the st-cube.

These variations have a more significant influence on performance,

which will be evaluated in Section 5.

4 MOTION COMPENSATION

Neither of the two approaches to classifying st-cubes introduced

in the previous section accounts for the fact that both the gradient

orientations used to build the 3D HoG and the filter responses

in the CNN case are biased by the global object motion. This

Figure 5: The structure of the Convolutional Neural Network,

which we used for flying object detection. CL, PL and FL

correspond to Convolution, Pooling, and Fully-connected layers

respectively.

Coarse

alignment

Refinement

Figure 6: Structure of the CNNs used for motion compensation.

(Top) The first network uses extended patches to correct for the

large displacements of the aircraft. (Bottom) The second network

is applied after rectification by the motion predicted by the first

network, and is designed to correct for the small motions.

makes the learning task much more difficult and we propose

to use motion compensation to eliminate this problem. Motion

compensation will allow us to accumulate visual evidence from

multiple frames, without adding variation due to the object motion.

We therefore aim at centering the target object, so that when

present in an st-cube, it remains at the center of all its image

patches.

More specifically, let It denote the t-th frame of the video

sequence and (i, j) some pixel position in it. The st-cube bi,j,t
is the 3D array of pixel intensities from images Iz with z ∈
[t−st+1, t] at image locations (k, l) with k ∈ [i−sx+1, i] and

l ∈ [j−sy+1, j], as depicted by Fig. 4. Correcting for motion can

be formulated as allowing patches mi,j,z, z ∈ [t−st+1, t] of the

st-cube to shift horizontally and vertically in individual images.

In [11], these shifts are computed using optical flow infor-

mation, which has been shown to be effective for pedestrians

occupying a large fraction of the patch and moving relatively

slowly from one frame to the next. However, as can be seen in

Fig. 4, these assumptions do not hold in our case and we will

show in Section 6 that this negatively impacts performance. To

overcome this difficulty, we introduce instead a learning-based

approach to compensate for motion and keep the object in the

center of the mi,j,z patches of the st-cube even when the target

object’s appearance changes drastically.

More specifically, we treat motion compensation problem as a

regression task: given a single image patch, we want to predict the

2D translation that best centers the target object. By rectifying all

the image patches in an st-cube with their predicted translation,

we can then align the images of the object of interest together.
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Figure 7: Combining multiple detections in several images of a

video sequence. The red square and dots depict the positions of

the original detection across the 50 frames preceding two different

images. The green square and dots illustrate the position of the

same detections after refinement. They are superposed and form

much smoother trajectories. (best seen in color)

(a) UAV dataset (b) Aircraft dataset

Figure 8: Sample image patches containing aircrafts or UAVs from

our datasets.

4.1 Boosted tree-based regressors

One way to predict the translation for an input patch m, is to train

two different boosted trees regressors [40] φx(m) and φy(m), one

for each 2D direction (horizontal and vertical).

As for detection, we use regression trees hj(m) =
T (θj ,HoG(m)) as weak learners, where HoG(m) denotes the

Histograms of Oriented Gradients for patch m. The difference

is that we minimize here a quadratic loss function instead of an

exponential one

L(r, φ∗(m)) = (r − φ∗(m))2, (5)

where m is the input patch, r the corresponding expected 2D

vector, and φ∗(m) = [φx(m), φy(m)]⊤ the 2D vector predicted

by the 2 regression trees.

We then apply these regressors in an iterative way: we obtain a

first estimate of the shift of the target object—if present—from the

center of the patch. We translate it according to this estimate, and

we re-apply the regressors. We iterate until both shift estimates

drop to 0 or the algorithm reaches a preset number of iterations.

In practice, 4 to 5 iterations are enough to achieve good accuracy.

4.2 CNN-based regressors

Another possible approach is to use a Convolutional Neural

Network (CNN) to solve the regression task. CNNs are more

flexible, as features are learned directly from the training data,

in contrast to the hand-designed HoG features we need to use with

our boosted tree-based regressors.

We trained two separate CNNs whose structure is depicted

by Fig. 6. Note that there is no pooling layer after the first

convolutional one. This is because pooling layers are typically

used not only to reduce computational complexity but also to

achieve invariance to small motions. In our case, such invariance

would be counter-productive because these motions are precisely

what we are trying to estimate. Furthermore, the computational

complexity remains manageable even without the first pooling

layer. We trained the first CNN using examples involving large

2D translations (coarse-CNN) and the second smaller ones (fine-

CNN). In practice we use the latter to refine the predictions of the

former. As when using boosted-trees, we use CNN-regressors it-

eratively until convergence, as described at the end of Section 4.1.

We first correct for large displacements by applying several times

coarse-CNN and we then apply fine-CNN, which is trained to

compensate for small shifts of the object, for a couple more

iterations.

In fact, we also tried training two different boosted-tree regres-

sors such as those discussed in Section 4.1. Unlike in the case of

the CNN regressors, it produced no significant improvement. This

likely happens because our boosted trees motion compensation

algorithm is based on HoG, where histograms are computed over

the bins of fixed size. This, in fact, introduces invariance to

small deviations of objects, which makes it hard to achieve high

localization precision.

4.3 Motion Compensated st-cubes

Once the regressors have been trained, we use them to compensate

for motion and build the st-cubes that we will use as input for

classification, as depicted by Fig. 3. Fig. 2 illustrates several

st-cubes of a drone from the testing dataset and after motion

compensation, using either optical flow from [11] or our approach.

Note that the latter tends to keep the target object much closer to

the center, especially when the background is non-uniform and

noisy or under lighting changes.

Part of the difficulty in detecting fast moving flying objects

is that they can appear anywhere in the 3D environment and that

their apparent size can vary enormously. This makes it necessary

to scan the whole image at different scales using a sliding window

to avoid missing anything, which is computationally expensive.

Fortunately, our motion compensation scheme frees us from

the need to evaluate every image position. When there is a target

object, our algorithm automatically shifts the patch so it is in the

center. As a result, instead of having to test windows centered

at every pixel location, we only have to check non-overlapping

ones because the algorithm will automatically shift their location

to center the target object when one is present. This also makes its

unnecessary to use heuristics such as non-maximum suppression,

as all the detections that arise from a single object will be shifted to

the same position. The duplicates can therefore easily be removed,

leaving us with just a single detection per object, as illustrated by

Fig. 7.

As discussed in Section 3, we process each scale indepen-

dently. We then perform non-maximum suppression in scale-space

as a final step.

5 DESIGNING THE OPTIMAL APPROACH

The two key components of our pipeline are motion compen-

sation and classification of the st-cubes, both of which can be

implemented using either CNNs or hand-designed features. In this

section, we test the various possible combinations and justify the

parameter choices we made for the final evaluation of our whole

approach against several baselines, as described in Section 6.
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UAV Dataset

Aircraft Dataset

Figure 9: An object’s apparent size can change enormously depending on its pose and distance to the camera. We therefore use a sliding

window approach at different resolutions. The green boxes denote detections by our algorithm, which successfully handles background,

lighting, scale, and pose changes.

Since the problem of detecting small flying objects has not

yet received extensive attention from our community, there is not

yet any standard dataset that can be used for testing purposes.

We therefore built our own, one for UAVs and one for planes.

We first describe them and then describe our testing protocol and

the metrics we used for evaluation purposes. Finally, we perform

the above-mentioned comparisons and demonstrate that the best

results are obtained by using the CNN approach of Section 4.2 for

motion compensation and the HoG3D descriptors of Section 3.1

for actual detection.

5.1 Datasets

To evaluate the performance of our approach, we built two separate

datasets. They feature many real-world challenges including fast

illumination changes and complex backgrounds, such as those

created by moving treetops seen against a changing sky. They

are as follows.

• UAV dataset. It comprises 20 video sequences of 4000

752 × 480 frames each on average. They were acquired

by a camera mounted on a drone filming similar ones while

flying indoors and outdoors. The outdoor sequences present

a broad variety of lighting and weather conditions. All these

videos contain up to two objects of the same category per

frame. However, the shape of the drones is rarely perfectly

visible and thus their appearance is extremely variable due to

changing altitudes, lighting conditions, and even aliasing and

color saturation due to their small apparent sizes. Fig. 8(a)

illustrates some examples of the variety of appearance of a

drone present in this dataset.

• Aircraft dataset. It consists of 20 publicly available videos

of radio-controlled planes. Some videos were acquired by a

camera on the ground and the rest was filmed by a camera

on board of an aircraft. These videos vary in length from

hundreds to thousands of frames and in resolution from

640 × 480 to 1280 × 720. Fig. 8(b) depicts the variety of

plane types. The aircrafts may also appear under different

angles, which makes the problem more complex. Fig. 9

shows some examples of the pose variation that a plane could

have throughout the video sequence.

UAV dataset

Aircraft dataset

Several failure cases

Figure 10: Examples of motion compensation. The first image in

each pair shows the middle patch of the original st-cube, coming

from the sliding window. The second image corresponds to the

same patch after applying our motion compensation algorithm.

Failure cases are often due to motion estimation failures, which

happen when the appearance of the object is heavily corrupted by

noise.

5.2 Training and Testing

In all cases, we used half of the data to train regressors and

detectors. We manually supplied 8000 bounding boxes centered

on a UAV and 4000 on a plane.

We used the Boosted trees implementation of [41] for both

regression and detection. To compute the HoG3D and HoG

descriptors, we used the publicly available implementations [14]

and [42], respectively. We used Theano [17] to build the CNN

models for both regression and detection tasks. In both of these

cases we used the method described in [38] for optimization. The
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UAV dataset Aircraft dataset

Figure 11: Influence of the st-cubes sizes on the performance of Boosted trees (HBT-Detection) and CNN (CNN-Detection) detectors

with CNN-based motion compensation method, as described in Section 5.2.3. The plots are colored according MR|FPPI=1 criterion

(introduced in Section 5.2.2). Here blue corresponds to the higher MR|FPPI=1, while red to the lower one. The darker lines on both

plots correspond to the best performing examples of two different types of machine learning algorithms, according to the same criterion.

The evaluation was performed on the validation subsets of the UAV and Aircraft datasets. (best seen in color)

structures of the CNNs for detection and motion compensation are

depicted by Figs. 5 and 6 respectively. Here the parameters of each

layer—the numbers of filters per layer and their dimensions—are

given in the figures in the format N × (kx, ky, kt), where N and

(kx, ky, kt) are the number of filters and their sizes respectively.

5.2.1 Training the Motion Regressors

To provide labeled examples where the aircraft or UAV is not

in the center of the patch but still at least partially within it, we

randomly shifted the ground truth bounding boxes by a translation

of magnitude up to half of their sizes. This step was repeated for all

the frames of the training database to cover the variety of shapes

and backgrounds in front of which the aircraft might appear.

Applying large translations to the training data allows us

to run the detection to only non-overlapping patches without

missing the target, as explained at the end of Section 4.3. This

procedure allows us to generate as much training data as needed

for both Boosted trees (HBT-Regression) and CNN regressors

(CNN-Regression), which is important for performance especially

as the latter is known to require large amounts of training data.

The apparent size of the objects in the UAV and Aircraft

datasets varies from 10 to 100 pixels. To train the regressor, we

used 40× 40 patches containing the UAV or aircraft shifted from

the center.

The CNN-based regressor relies on convolutions of the orig-

inal patch with filters from different network layers, which may

produce artifacts close to the patch borders and degrade perfor-

mance when the object is only partially visible. To reduce the

influence of such artifacts, we extend the input patch by 25% in

both the horizontal and vertical directions. This needs to be done

only for the coarse alignment CNN, as depicted by the top row

of Fig. 6. It is not required for the refinement CNN that only

estimates small motions.

Fig. 10 depicts some examples of motion compensation. Note

that even though both aircrafts and drones appear in front of

changing backgrounds, the motion compensation algorithm cor-

rectly estimates the object location within the patch. Fig. 10 also

illustrates some cases when the motion compensation system is

unable to correctly predict the location of the object in the patch.

This typically occurs when the patches are very noisy and the

object is almost not visible.

To handle the wide range of flying objects apparent sizes, we

use a multi-scale sliding window detector. Fig. 9 shows the same

UAV and plane appearing at various distances from the camera

throughout the video sequence.

5.2.2 Evaluation Metrics

In our experiments we consider an object to be correctly detected

if there is 50% overlap between the detected bounding box and

the ground-truth bounding box.

We report precision-recall curves. Precision is computed as the

number of true positives detected by the algorithm divided by the

total number of detections. Recall is the number of true positives

divided by the number of the positive test examples. Additionally

we use the Average Precision measure, which we take to be the

integral
∫ 1
0 p(r)dr, where p is the precision, and r the recall.

We also report the log-average miss-rate (MR) with respect

to the average number of false positive per image (FPPI). The

miss-rate is computed as the number of true positives missed by

the detector, divided by the total number of true positives; FPPI

is computed as the total number of false positives, divided by the

total number of images in the testing dataset:

MR = 1− Nd

Ntp
,

FPPI =
Nfd

Nf
,

(6)

where Nd, Nfd, Ntp, Nf are the number of true and false detec-

tions, the number of positively labeled examples and the number

of frames in the test set, respectively.

5.2.3 Motion Compensation Performance Analysis

Prior to evaluating the detection accuracy of the methods we

need to apply motion compensation to the st-cubes. Thus we

need to evaluate, which motion compensation method performs

best. To this end, we created a validation dataset by selecting

one video from each dataset. These videos are then used to

generate data, using the method introduced in Section 5.2.1. We
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use the validation set to tune the parameters and then perform the

comparison against competing approaches on the test set.

We compare HBT-Regression and CNN-Regression in terms

of Root Mean Square Error (RMSE). More formally, we are given

a validation set of pairs (Xi, S
a
i ), i ∈ 1..N , where Xi is a patch

and Sai ∈ R
2 corresponds to the true shift of the object from

the center of the patch. Let also Spi ∈ R
2 : Spi = φ(Xi) be

the prediction of the shift of the object, obtained by the motion

compensation system. Then the RMSE is computed using the

following equation:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(Spi − Sai )
2 . (7)

Note that Spi and Sai do not depend on the size of the patch.

Table 1 depicts the results of this comparison.

CNN-Regression outperforms HBT-Regression on both datasets.

For reference we also provide RMSE0, which is computed as:

RMSE0 =

√

√

√

√

1

N

N
∑

i=1

(Sai )
2. (8)

RMSE0 reflects the case when no motion compensation is applied.

RMSE

method UAV dataset Aircraft dataset

No motion compensation (RMSE0) 0.1474 0.1451
HBT-Regression 0.0939 0.0805
CNN-Regression 0.0669 0.0749

Table 1: Performance of motion compensation methods. The

valuation was performed on the validation subsets of the UAV

and Aircraft datasets.

We therefore used the CNN-Regression algorithm to produce

a number of aligned st-cubes of sizes ranging from (sx, sy, st) =
(28, 28, 4) to (sx, sy, st) = (40, 40, 11), some of which we used

for training and others for testing. For patches smaller than 40 ×
40, we simply upscale them to 40×40 before applying the motion

compensation regressors. The choice of st controls the trade-off

between detecting far away objects using large values and closer

ones using smaller ones. This is because, when the object is very

close, the apparent motion may become too large for our motion

compensation scheme. We found that increasing st beyond 11 did

not bring any improvement in performance, while decreasing it

below 4 left us with too little motion information.

As described above we have used the same video sequences

to select the most appropriate size st for the st-cube. Fig. 11 sum-

marizes our experiments, in terms of Average miss-rate curves.

The legend of the plot describes the set-up used during the ex-

periments. The number in brackets correspond to the (sx, sy, st)
dimensions of the st-cube. The order of the curves in the legend is

designed in the way that the highest curve is highest in terms of

MR|FPPI=1 measure. The lowest curve corresponds to the best

performing set-up. For the different detection algorithms we show

the best performing results by making the curves darker.

The classifiers of Section 3.1 rely on boosted trees operating

on HoG3D descriptors [14]. We computed them using the default

parameters, that is, 24 orientations per bin of size 4×4×2 pixels.

The Boosted trees detector uses 1500 trees of depth 2. We will

further refer to this method as HBT-Detection.

(a) UAV dataset (b) Aircraft dataset

Average Precision

HBT-Detection detection algorithm,

together with different motion com-

pensation methods

UAV dataset Aircraft dataset

No motion compensation 0.485 0.497

Optical flow 0.540 0.652

HBT-Regression 0.751 0.789

CNN-Regression 0.849 0.864

Figure 12: Comparison of motion compensation methods on the

test subsets of our datasets. For all the motion compensation

algorithms we have used the same HBT-Detection approach, as

it proved to be more accurate, comparing to CNN-Detection.

Unlike the optical flow-based algorithm, our regression-based ones

properly identify the shift in object position and correct for it, even

when the background is complex and the object outlines are barely

visible. This yields a better precision/recall. Table in the bottom

of the figure depicts the Average Precision score for the methods

presented above.

For the CNNs of Section 3.2, we tried different network

configurations, with variations of the number and size of filters in

the convolutional layers and varying numbers of fully connected

layers. In the end, they all ended up yielding very similar results.

The final configuration that we used is illustrated by Fig. 5. We

will refer to this method as CNN-Detection.

As depicted by Fig. 11, HBT and CNN detectors perform

similarly on the plane dataset but the former clearly outperforms

the latter on the UAV dataset when we allow a single false positive

per frame on average. This may seem surprising but similar

behaviors have been reported by [43] where the top four methods

rely on decision forests while the Deep learning approach ranks

only sixth. In our case, this may be attributable to the size of the

training database not being large enough to take full advantage

of the power of CNNs. Furthermore, for tasks that require as few

false positives as possible, the CNNs win.

In any event, these experiments suggest that the optimal

dimension of the st-cube depends on the task at hand. The apparent

size of the UAVs is small, which favors large temporal dimension.

As can be seen in Fig. 11(a), the best results are obtained for

st = 11. By contrast, the Aircraft dataset comprises examples of

planes flying at many different distances from the camera. In this

case, st = 7 is optimal for both HoG3D descriptors and CNNs.

5.2.4 Detection-Based Evaluation

Another way to evaluate our motion compensation algorithm is

to compare the detectors, trained on the data, processed with either

HBT-Regression or CNN-Regression methods. This measures the



9

influence our motion compensation algorithm has on the accuracy

of the detector, which is what we are interested in. We have chosen

HBT-Detection method for detection task, as it is faster to train and

it showed better accuracy on validation set, based on experiments,

depicted by Fig. 11. We compared our two methods described

in Section 4 with an optical flow based method [11], which is

probably the best available.

Fig. 12 illustrates the results of this comparison. We also

provide the performance of the same detector, trained and tested

on the data without motion stabilization for reference.

Our methods are able to correctly compensate for the UAV

motion even in the cases where the background is complex and

the drone might not be visible due to image saturation and noise.

Fig. 2(b,d) illustrates this hard situation with an example. On

the contrary, the optical flow method is more focused on the

background, which decreases its performance. Fig. 2(c) shows an

example of a relatively easy situation, where the aircraft is clearly

visible, but the optical flow algorithm fails to correctly compensate

for its movement, while our regression-based approach succeeds.

Fig. 2(a) illustrates another situation, where the object is not

in the center of the patch for the middle image of the st-cube.

Optical flow methods will align other patches of the st-cube with

respect to the middle one, which will result in object being shifted

from the center in all the st-cube patches. By contrast, our motion

compensation algorithm does not require any reference frame,

leading to higher accuracy.

Using motion compensation for alignment of the st-cubes

results into a higher performance of the detectors, as in-class

variation of the data is decreased. Fig. 12 shows that we can

achieve at least 15% improvement in average precision on both

datasets using our motion compensation algorithm.

Our CNN-based motion compensation algorithm performs

best. It yields about a 10% increase in accuracy, compared to the

boosted trees method. Such difference in performance most likely

lies in the nature of the features used by these machine learning

techniques. The boosted trees regressor is using HoG features,

which might not be perfectly suited for the problem, while the

filters in the CNN are learned directly from the data. As the CNN

obtains better accuracy, for our further experiments we will use

the CNN-based motion compensation.

6 COMPARING AGAINST COMPETING METHODS

In this section, we compare the performance of the pipeline of

Section 3, optimized as described in Section 5, against several

state-of-the-art algorithms on the two challenging datasets intro-

duced in Section 5.1. For these experiments, we therefore use st-

cubes whose sizes are (28, 28, 11) for UAVs and (28, 28, 7) for

planes, which are those we determined to yield the lowest miss-

rates when we use HoG3D descriptors for detection and CNNs for

motion compensation.

We first list the algorithms we use as baselines. and show

that ours outperforms them consistently both for plane and UAV

detection. We then demonstrate that motion compensation does not

significantly degrade performance in cases when it is not strictly

needed, such as when two aircrafts are on a collision course.

6.1 Baselines

To demonstrate the effectiveness of our approach, we compare it

against state-of-the-art algorithms. We chose them to be represen-

tative of the three different ways the problem of detecting small

moving objects can be approached, as discussed in Section 2.

UAV dataset Aircraft dataset

Figure 13: Comparing against appearance-based approaches [16],

[17], [19], [44] in terms of precision/recall. For both the UAV

and Aircraft datasets, the blue curve depicts our approach and is

significantly above the others.

• Appearance-Based Approaches rely on detection in in-

dividual frames. We will compare against Deformable

Part Models (DPM) [16], single-frame based Convolu-

tional Neural Networks (s-f CNN-based detector) [17], Ran-

dom Forests [44], and the Aggregate Channel Features

method (ACF) [19], the latter being widely considered to

be among the best.

Since our algorithm considers st-cubes, for a fair comparison

with these single-frame algorithms, we proceed as follows.

Similarly to our approach we divide the video sequence into a

set ofN -frame overlapping slices. We further extract st-cubes

using a sliding window approach, but motion compensation

is not applied. We then run the single frame based detector on

each of the patches of these st-cubes and consider the whole

st-cube b as positive if the weighted average of scores of the

patches in b is positive. We use a simple Gaussian kernel G
centered on the middle frame of b as a weighting function. G
is defined as G = exp (−(i− st/2)

2/2σ2), where st is the

filter size and σ is taken as σ = 0.3((st − 1)/2− 1) + 0.8
as often done. We tried simply averaging over the detection

scores of the set of patches in the b, but it resulted in lower

accuracy, because the detectors tend to give a higher score to

the middle frame, in which the object appears to be close to

the patch center.

• Motion-based Approaches do not use any appearance in-

formation and rely purely on the correct estimation of the

background motion. Among those we experimented with

MultiCue background subtraction [21], [22] and large dis-

placement optical flow [26].

• Hybrid approaches are closer in spirit to ours and correct

for motion using image-flow. Among those, the one presented

in [11] is the most recent we know of and the one we compare

against. The main difference is that it relies on optical flow

for motion compensation whereas we use CNNs. To ensure

a fair comparison, we used the same patches to construct the

st-cubes both for our method and to extract the features [11]

requires.

For all the motion-based [21], [22], [26] and single-frame-

based [16], [17], [19], [44] approaches, the code was down-

loaded from publicly available sources. In particular, for ACF

and Random Forests, we used the toolboxes of [45] and [41]
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Our approach

Background subtraction

Optical flow

UAV dataset Aircraft dataset

Figure 14: Comparing against motion-based methods [21], [26]. (First row) Our detector detects the objects by relying on motion and

appearance, as evidenced by the green rectangles. (Middle row) Background subtraction results of [21]. Only in the leftmost frame

of the three on the left, is there a blob that corresponds to a UAV, along with one that does not. Similarly, there is a small blob that

corresponds to a plane in the central frame of the three right-most ones and many large ones in the others that do not clearly correspond

to anything. (Bottom row) Optical flow computed using the algorithm of [26]. The plane and UAV generate a distinctly visible pattern

in 2 or the 3 right-most images but in none of the three left-most ones. (best seen in color)

respectively. The DPM implementation is publicly available [16].

We also used the open source BGSLibrary [22] for state-of-the-

art background subtraction. To compute features, we used default

parameter configurations much as we did in our own pipeline

for HoG3D. For algorithms relying on Random Forest, we tried

varying the number of trees, and kept the number yielding the best

results, again much as we did to find the best CNN configurations

in our pipeline. For [11], we did not find a publicly available

implementation and reimplemented the algorithm ourselves.

6.2 Evaluation against Competing Approaches

We used the same video sequences to train all the methods from

the three classes described above. We compare here their results

against ours.

6.2.1 Appearance-Based Methods.

In Fig. 13, we compare our method with appearance-based ones on

our two datasets in terms of precision/recall. Table 2 summarizes

the results in terms of Average Precision. For both the UAV

and Aircraft datasets we improve on average by 15 − 20% over

ACF [19], which itself outperforms the others.

The CNN approach, provided by [17] yields scores comparable

to those of the Random Forests and ACF methods. The structure

of the network is the one depicted by Fig. 5, except for the fact that

we replaced 3D convolutions by standard 2D ones. To boost CNN

performance, we used Local Contrast Normalization (LCN) [46]

after every convolutional layer and minimize the Hinge Loss at the

final layer of the network, which was shown to be effective [47],

[48].

The DPM [16] performs worst on average. This likely happens

because it depends on using the correct size of the bins for HoG

Average Precision

Method UAV dataset Aircraft dataset

Single-frame based approaches

DPM [16] 0.573 0.470
Random Forests [44] 0.618 0.563
s-f CNN-based detector [17] 0.682 0.647
ACF [19] 0.652 0.648

Hybrid approaches

Park [11] 0.568 0.705
Ours 0.849 0.864

Table 2: Average precision of detection methods on our datasets.

We can see that in both cases our approach is able to reach higher

detection accuracy. We achieve about 15% increase comparing to

the best competing algorithms for the UAV and Aircraft datasets.

estimation, which makes it hard to generalize for a large variety

of flying objects.

6.2.2 Motion-Based Methods

Fig. 14 depicts cases where background subtraction [21] and

optical flow computation [26] algorithms, even though they are

state-of-the-art, do not work well enough for detecting UAVs or

planes in the challenging conditions we consider.

We did not compute precision-recall curves using these

motion-based methods because it is unclear how big the moving

part of the frame should be considered as an aircraft. We have

tested several potential sizes and the resulting average precision

values were much lower than those in Table 2 in all cases.

6.2.3 Hybrid approaches

In Fig. 15, we compare our method against the hybrid approach

of [11], which relies on motion compensation using Lucas-Kanade
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(a) UAV dataset (b) Aircraft dataset

Figure 15: Comparing against the hybrid method of [11]. Our

approach performs better for both UAVs and Planes.

Figure 17: Collision courses. (Left) The apparent size of a stan-

dard glider and its 15 m wingspan flying towards another aircraft

at a relatively slow speed (100 km/h) is very small 33s before

impact, but the glider completely fills the field of view only half a

minute later, 3s before impact. (Right) An aircraft on a collision

course is seen in a constant direction but its apparent size grows,

slowly at first and then faster.

optical flow method, and yields state-of-the-art performance for

pedestrian detection. As shown in Fig. 2, optical flow motion com-

pensation cannot achieve good performance in our case, mostly

because the target object is rather small and its appearance can

significantly change due to illumination and background changes.

As a result, our regression-based approach allows to achieve

higher performance for both the UAV and aircraft datasets. This

suggests that accurate localization of the object in the patch is es-

sential and leads to significant improvement in detection accuracy.

Fig. 16 shows several frames to illustrate the performance of our

approach.

6.3 Collision Courses

Motion compensation can be seen as a way to make the st-cube

invariant from the motion of the aircraft, as it keeps flying object

in the center, for all the patches of the st-cube. To evaluate whether

enforcing this kind of invariance negatively impacts performance

in the situations when it is not required, we applied our approach

to the case of aircrafts on collision courses.

As shown in Fig. 17, if the aircraft A1, observed from the

camera of another aircraft A2, is on collision course with A2 then

its behavior can be characterized by two important properties:

• A1 remains at constant angle with respect to A2

• the apparent size of A1 increases from the point of view of

A2

These properties are invariant from the actual positions of the

aircrafts in the 3D environment, the only constraint is that the paths

of the aircrafts should intersect, which effectively means collision.

In the scope of this paper only the first property is important,

which means that motion stabilization is not needed, as A1 will

AveP
st-cube (Average Precision)

W/o compensation 0.907

With compensation 0.904

Figure 18: Performance for aircrafts on a collision course. (Left)

Precision/recall with and without motion compensation. (Right)

Average Precision with and without motion compensation.

always occupy the same position in the image from the camera of

A2, provided A1 and A2 are on collision course.

We therefore searched publicly available sources for video

sequences in which airplanes appear to be on a collision course

for a substantial amount of time. We found fourteen, which vary

in length from tens to several hundreds of frames. As before, we

used half of them to train the detector and the others to test it.

In Fig. 18, we compare our results with and without motion

stabilization. As expected, even though the non-stabilized results

were poor in the general case, they are much better in this specific

scenario. Incorporating motion stabilization very slightly degrades

performance, which could be expected because enforcing any kind

of invariance always loses some amount of information and is

penalizing when such invariance is not required. However, in this

case, the loss is almost negligible.

This is significant because, in a practical on-board system,

detecting aircrafts on a collision course, which present a clear and

immediate danger, would probably take priority over detecting all

others. The former does not require motion compensation while

the latter does. However, since nothing is lost by having motion

compensation on, we can detect all aircrafts, whether on a collision

course or not, without performance loss in the crucial case of those

that are.

6.4 Scale Adjustment

As discussed in Section 4.3, we must run our detection scheme

at different image resolutions to accommodate rapid size changes.

This additional computational burden can be reduced by com-

pensating not only for motion but also for size, which makes it

possible to reduce the number of scales the system needs to check.

More specifically, we trained a regressor φsc(·) to adjust for

scale so that the bounding box fits the object of interest, much

in the same way as we learned a regressor to compensate for

motion. Fig. 19 illustrates this process in two separate cases.

Note that in the case of Fig. 19(b), there were originally two

different detections, which were collapsed into the same one after

adjustment without having to perform non-maximum suppression.

Since CNNs have proved more effective for motion compensa-

tion than HoG based regressors, we used them to implement scale

adjustment as well. We found out experimentally that using just a

single patch to predict the true scale of the object is not enough.

As in [49], we therefore used several scales as inputs to the CNN.

Fig. 20 illustrates its structure.

The input to this CNN is a set of images of the object at

different scales, which are provided as separate channels. Its
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UAV dataset

Aircraft dataset

Figure 16: Some detection results. Thumbnails at the side of each figure show the zoomed-in versions of the detections made by our

algorithm.

(a) (b)

Figure 19: Scale adjustment. The red bounding box shows the

original detection and the green one the position adjusted for scale

and motion. The thumbnails on the right are zoomed-in versions of

the detections, with the top one illustrating the original detection

and the bottom one showing the one after being motion and scale

are adjusted. (best seen in color)

Figure 20: Structure of the scale adjustment Convolutional Neural

Network. Several input channels contain object at different scales.

The output of the CNN is a number, which characterizes the true

scale of the object. ‘CL’ denotes a convolutional layer, ‘PL’ a

pooling layer, and ‘FL’ a fully connected layer.

output is the estimated scale of the object. Since there is no pooling

layer after the first convolutional layer, we can estimate the scale

with high precision. Furthermore, this CNN can be combined with

the motion stabilization one of Section 4 to increase the accuracy

of both motion compensation and scale adjustment. The structure

of the resulting composite CNN is similar to the one depicted

by Fig. 20. However, the output of its fully-connected layer has

3 floating point values instead of only 2. The first two are the

shifts from the center of the patch in the spatial domain and the

last one is the estimated scale. This replaces NMS in scale space,

as described in Section 3, and yields precise object localization.

Fig. 21 depicts some scale-adjustment results.

Table 3 compares the time required to process a single st-cube

using our approach with and without scale adjustment. In this case,

UAV dataset

Aircraft dataset

Figure 21: Sample results for simultaneous scale and motion

compensation. The left image of each pair contains the original

patch, where neither scale nor position are corrected. The right

patch depicts the resulting patch after scale and motion correction.

motion compensation + detection 0.123s
motion and scale adjustment + detection 0.193s

Table 3: Speed comparison of the motion and scale adjustment

methods with motion compensation. We provide the time needed

to process a single st-cube using an Intelr Xeonr CPU E5-2650

v2 running at 2.60GHz.

we have used st-cubes of size (40, 40, 4) and 7 scales for the scale

adjustment algorithm. Note that the number of scales can be se-

lected with respect to the desired localization quality. Thus having

many scales will yield more precise estimation of the object size,

at the cost of a computation time increase. In our experiments we

selected 7 scales, which results in high localization precision, as

depicted by Fig. 22, while keeping the processing time relatively

low. Even though adding scale adjustment to motion compensation

increases the processing time per st-cube, it reduces the overall

computation time by a factor of about 4. This is because it replaces

the need of doing NMS across 7 different scales, which takes

0.123 ∗ 7 = 0.861 seconds, by processing one st-cube while

accounting for scale, which takes 0.193 seconds.

In Table 4, we evaluate our approach on the UAV dataset with

and without scale adjustment. Even though HBT-Detection with
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UAV dataset

Method:
number of scales average miss-rate

processed per frame for FPPI = 1

HBT-Detection
without scale adjustment 4 51%
without scale adjustment 8 50%

with scale adjustment 8 54%
with scale adjustment 16 52%
with scale adjustment 32 48%

Table 4: Evaluation of the HBT-Detection method on the UAV

dataset with and without scale adjustment. Both method perform

better when more scales are used, at the cost of increasing the

computation time.

scale adjustment allows for faster computation, its performance is

slightly lower than without scale adjustment. This is mainly due to

the artifacts that appear when resizing small noisy images. Greater

scale numbers improve detection accuracy at the cost of increased

computation time.

In the experiments of Section 6.2, we rely on 50% overlap

between detected and ground-truth bounding boxes. Thus, it is un-

necessary to localize the target objects very precisely. We therefore

use our method without scale adjustment on 8 distinctive scales,

which yields a good balance between accuracy and computational

time.

Fig. 22 illustrates the performance of our detection method

in combination with motion compensation and scale adjustment.

Our algorithm localizes the flying object with a great accuracy and

yields trajectories that are smooth both in the spatial domain and

in scale space. Provided that the camera is calibrated and given the

true size of the object, we can estimate its distance to the camera,

which is critical for collision avoidance purposes.

Different other examples that illustrate the performance of our

motion compensation and detection approaches can be found at the

following link: http://cvlab.epfl.ch/research/unmanned/detection.

7 CONCLUSION

We showed that temporal information from a sequence of frames

plays a vital role in detection of small fast moving objects like

UAVs or aircrafts in complex outdoor environments. We therefore

developed an object-centric learning-based motion compensation

approach that is robust to changes in the appearance of both object

and background. Both CNN and Boosted trees methods allow

us to outperform state-of-the-art techniques on two challenging

datasets. The CNN proved to be more suitable for motion compen-

sation than the Boosted trees introduced in our previous work [15].

To evaluate our algorithms, we collected two challenging

datasets for UAVs and Aircrafts detection. We hope that these

datasets will become used as a new benchmark for improving fly-

ing objects detection and visual-based aerial collision avoidance.
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Figure 22: Precise estimation of the scale of the object allows us

to localize it in 3-D space. (Top Left) Scale and motion adjusted

detection of the aircraft in one frame of a video sequence. (Top

Right) Projection of the points of the 3D trajectory throughout the

previous 20 frames to the image plane. (Bottom Left) Changes of

object scale. (Bottom Right) Trajectory of the object in 3D space

is quite smooth due to the motion compensation algorithm, while

neither tracking nor additional smoothing is applied.
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