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1Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne (EPFL)
2Institute for Computer Graphics and Vision, Graz University of Technology

{firstname.lastname}@epfl.ch, lepetit@icg.tugraz.at

Abstract

We propose a robust and accurate method to extract the

centerlines and scale of tubular structures in 2D images and

3D volumes. Existing techniques rely either on filters de-

signed to respond to ideal cylindrical structures, which lose

accuracy when the linear structures become very irregular,

or on classification, which is inaccurate because locations

on centerlines and locations immediately next to them are

extremely difficult to distinguish.

We solve this problem by reformulating centerline detec-

tion in terms of a regression problem. We first train regres-

sors to return the distances to the closest centerline in scale-

space, and we apply them to the input images or volumes.

The centerlines and the corresponding scale then corre-

spond to the regressors local maxima, which can be easily

identified. We show that our method outperforms state-of-

the-art techniques for various 2D and 3D datasets.

1. Introduction

Finding the centerline and estimating the width of lin-

ear structures is a critical first step in many applications,

ranging from road delineation in 2D aerial images to mod-

eling blood vessels, lung bronchi, and dendritic arbors in

3D biomedical image stacks. Most existing techniques rely

on filters designed to respond to locally cylindrical struc-

tures [7, 23, 12, 17, 14, 28], optimized for specific pro-

files [11], or learnt [22, 8, 4]. They compute a scale-

dependent measure that, ideally, should be maximal at the

centerline of linear structures when computed for the cor-

rect scale.

Among these approaches, the learning-based ones tend

to outperform the hand-designed ones when the linear struc-

tures become very irregular and deviate from the ideal-

ized models on which their design is based. Some works
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Figure 1. Detecting dendrites in a 3D brightfield image stack.

Top row: Minimal intensity projection with two enlarged de-

tails. Middle row: Comparison of the responses of our method

against a recent model based approach [25] and a classification

based one [4]. Bottom row: Centerlines detected after perform-

ing Non-Maximum Suppression on the response images. Model

based methods have trouble modeling highly irregular structures.

Classification based approaches respond on the whole body of the

tubular structure and do not guarantee maximal response at the

centerline. Our method combines robustness against image arti-

facts and accurate centerline localization.

only aim at segmenting the linear structures from the back-

ground [4], and it is not clear how to reliably extract the

centerlines from the segmentation. Others focus on the cen-

terlines, but they typically rely on classification and this re-
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sults in poor localization accuracy. This is because it is hard

for the classifier to distinguish points on the centerline itself

from those immediately next to it.

In this paper, we show that this problem can be solved by

reformulating centerline detection in terms of a regression

problem. More precisely, we train scale regressors to return

distances to the closest centerline in scale-space. In this

way, performing non-maximum suppression on their output

yields both centerline locations and corresponding scales.

We will show that, on very irregular structures, it outper-

forms the powerful OOF approach with and without anti-

symmetry term [13, 14] that is widely acknowledged as one

of the best among those relying on hand-designed filters,

a very recent extension of it [25] designed to improve its

performance on irregular structures, and a similarly recent

classification-based method [4].

In the remainder of the paper, we first review related

work in section 2. Then, in section 3 we describe our

method. Finally, in section 4 we present the results obtained

on three challenging datasets and prove the superiority of

our approach over the state-of-the-art.

2. Related Work

Centerline detection methods can be classified into two

main categories, those that use hand-designed filters and

those that learn them from training data. We briefly review

both kinds below.

Hand-Designed Filters Such filters also fall into two

main categories. The first is made of Hessian-based ap-

proaches [7, 23, 22, 17, 6] that combine the eigenvalues

of the Hessian to estimate the probability that a pixel or

voxel lies on a centerline. The main drawback of these ap-

proaches is that the required amount of Gaussian blur to

compute the Hessian may result in confusion between adja-

cent structures, especially when they are thick.

This has led to the development of a second class of

methods based on Optimally Oriented Flux (OOF) [13].

They rely on the second order derivatives of an N -

dimensional ball and are less sensitive to the presence of ad-

jacent structures. Moreover, the radius of the ball provides

a reliable estimate of the tubular structure scale. Remain-

ing difficulties, however, are that OOF can also respond

strongly to edges as opposed to centerlines and that its per-

formance degrades when the structures become very irreg-

ular. A number of schemes have been proposed to solve the

first problem [1, 24, 19, 14, 28]. For example, in [14], an

Oriented Flux Antisymmetric (OFA) term was added and

has proved effective. There has been less work on improv-

ing OOF’s performance on truly irregular structures, except

for the very recent approach of [25] that attempts to maxi-

mize the image gradient flux along multiple radii in differ-

ent directions instead of only one as in [13].

The method proposed in [31] can be seen as a mixture of

these two classes. Hessian computation implicitly assumes

an ellipsoidal model whereas in [31] the ellipsoid is explic-

itly fitted to the data. Because this is harder to do than fitting

OOF balls, it is achieved by a learning a regression model

from image data to ellipse parameters. However, this has

only been demonstrated in a tracking context.

Learned Filters Even if care is taken to add computa-

tional machinery to handle irregular structures [22, 25], the

performance of hand-designed filters tends to suffer in se-

vere cases such as the one depicted by Fig. 1. This is mostly

because it is very difficult to explicitly model the great di-

versity of artifacts that may be present.

Some works therefore aim at segmenting linear struc-

tures in biomedical images [8, 29, 20, 4] or aerial ones [18,

27] by applying classification to label the pixels or vox-

els as belonging to the structure of interest or to the back-

ground. However, this is a problem simpler than the one

we consider. It is not accurate to find the actual center-

lines from the segmentation even with post-processing oper-

ations. In particular, there is no guarantee that the classifier

responses will be maximal at the centers of the structures.

By contrast, we recover the centerlines and the correspond-

ing thickness of the linear structures to which they belong,

and it is straightforward to generate a segmentation from

this data.

Other techniques, [10, 26, 30, 5] aim at extracting the

centerlines as we do, but still rely on binary classification

to distinguish the image locations on centerlines from the

rest. [30, 5] use Haar wavelets in conjunction with boosted

trees to detect the centerlines of tubular structures at dif-

ferent scales. [10] uses spectral-structural features instead

and SVMs to find road centerlines. In [26] co-occurrence

features and the AdaBoost algorithm are used to detect the

spinal column centerline.

These methods exhibit limited localization accuracy be-

cause points near the centerlines can easily be also classified

as centerline points due to their similar appearance. As our

experiments show, our approach based on regression rather

than classification is more adapted to the problem at hand.

3. Method

Let I(x), with x ∈ R
N , be an N -dimensional im-

age containing curvilinear structures of various radii. A

classification-based approach to finding their centerlines in-

volves learning a function y(·), such that

y(f(x, I)) =

{

1 if x is on a centerline,

0 otherwise,
(1)

where f(x, I) is a feature vector computed from a neigh-

borhood surrounding x in image I . As discussed above,
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Figure 2. Learning a regressor for centerline detection. (a) Raw

image; (b) Ground truth centerline; (c) The distance transform to

the centerline is used to discriminate points close to it; (d) The

function we want to learn is maximal at the centerlines and it is

thresholded to a constant value when the local window used to

compute features does not contain any centerline points; (e) The

function learned with our method; (f) Centerline detected after

Non-Maxima Suppression (NMS) on function ϕ.

this is hard to do because points on the centerline itself

for which y(·) should return 1 and their immediate neigh-

bors for which it should return 0 look very similar. One

way to solve this is to train y(·) to return 1 for all points

within a given distance from the centerline. However, in

practice, even if y(·) is allowed to return floating point val-

ues between zero and one, using for instance an SVM-style

classifier, there is no guarantee that its value will be maxi-

mal at the centerline itself. This makes finding its accurate

location, for example by using non-maximum suppression,

problematic.

Our solution is to learn instead y(·) as a regressor whose

values decrease monotonically as the distance of point x to

the centerline increases. Then, as shown in Fig. 2, we can

rely on simple non-maximum suppression to localize the

centerlines. We will show in the next section that this so-

lution is significantly more robust than both classification-

based and filter-based methods.

In the remainder of this section, we first describe this

process for structures whose scale is assumed to be known

a priori. We then relax this constraint to handle structures

of arbitrary scale and discuss the feature vectors we use as

input to our regressors. Moreover, we will use the terms

radius and scale interchangeably.

3.1. Learning a Regressor for Fixed Radius Struc­
tures

Let us momentarily assume that the linear structures

have a known radius r. Let C be the set of centerline points

and DC the corresponding Euclidean distance transform,

that is, DC(x) is the metric distance from location x to the

closest location in C.

Our goal is to learn a function y(·) such that y(f(x, I))
is maximal for x on the centerline and whose value de-

creases monotonically as x moves away of it. The function

d(x) = −DC(x) has this property, see Fig. 3. In theory,

given training data, we could learn y(·) as a regressor that

takes f(x, I) as input and returns −DC(x) as output. How-

ever, in practice, we learn a different function for the two

d(x)

e
a(1−

D
C
(x )

d
M

)
− 1

C x

dM

1 −

DC (x)
dM

−DC (x)

Figure 3. The function d in the case of x ∈ R. If a centerline point

is located in C, the function we want to learn is obtained from

the distance transform DC , after thresholding and scaling. The

vertical axis has been scaled for visualization purposes.

following reasons.

First, because our feature vectors f(x, I) are computed

using local neighborhoods of size s, a regressor could only

learn it for points that are close enough to the centerlines for

their neighborhood to be affected by it. For this reason, it

makes sense to threshold d when DC is greater than a given

value dM , which is a function of the neighborhood size s.

This yields the modified function

d(x) =

{

1− DC(x)
dM

if DC(x) < dM

0 otherwise,
(2)

which takes values between 0 and 1, see Fig. 3. In our im-

plementation, we set dM = s/2, which means that d is

uniformly 0 for points whose corresponding neighborhood

does not overlap the centerline.

Second, a regressor trained to associate to a feature vec-

tor f(x, I) the value of d(x) can only do so approximately.

As a result, there is therefore no guarantee that its maximum

is exactly on the centerline. To increase robustness to noise,

we have therefore found it effective to train our regressor

to reproduce a distance function whose extremum is better

defined. In our actual implementation, we take it to be

d(x) =

{

e
a(1−

DC (x)
dM

)
− 1 if DC(x) < dM

0 otherwise,
(3)

where a > 0 is a constant that control the exponential de-

crease rate of d close to the centerline, see Fig. 3. In all our

experiments, we set a = 6.

The regression method we use to learn function d is the

GradientBoost algorithm [9]. It can be viewed as a gener-

alization of the AdaBoost algorithm and it can efficiently

approximate very complex functions.

Given training samples {(fi, yi)}i, where fi =
f(xi, Ii) ∈ R

M is the feature vector corresponding to a

point xi in image Ii and yi = d(xi), GradientBoost ap-
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Figure 4. Training regressors for multiscale centerline detection. (a) Raw image; (b) Ground truth centerline; (c) Scale-space distance

transform for two scale values; (d) Distance transform thresholded and rescaled. Local maxima of this function provide the centerline

locations and the structure radii; (e) We approximate the function in (c) by learning different regressors for different radii; (f) The maximal

intensity projection of functions (e) is used to extract the centerline by applying non-maximum suppression; (g) Detected centerline. For

each centerline point we can recover the corresponding radius by considering the regressor that returned the maximal value for that point.

proximates y(·) by a function of the form

ϕ(f(x, I)) =
K
∑

k=1

αkhk(f(x, I)) , (4)

where hk : RM → R are weak learners and αk ∈ R are

weights. Function ϕ is built iteratively, selecting one weak

learner and its weight at each iteration, to minimize a loss

function L of the form L =
∑

i
L(di, ϕ(fi)). We use the

squared loss L(d, ϕ(f(x, I))) = ‖d − ϕ(f(x, I))‖2
2
. As it

is usually done with GradientBoost, we use regression trees

as weak learners since they achieve state-of-the-art perfor-

mance in many applications [9]. In all our experiments we

used K = 350 trees of depth 2. Fig. 2 shows the output of

the learned function for a sample image.

3.2. Handling Structures of Arbitrary Radius

In the previous section, we focused on structures of

known radius. In general, however, structures of many dif-

ferent radii are present. To generalize our approach to this

multi-scale situation, we redefine the function d of Eq. (3)

once again as

d(x; r) =

{

e
a·(1−

DC (x;r)
dM

)
− 1 if DC(x; r) < dM ,

0 otherwise,
(5)

where C is now the set of centerline points and the corre-

sponding radii. In other words, C now is a set of (x; r)
(N + 1)-dimensional vectors and DC(x; r) is the scale-

space distance transform of C

D2
C(x; r) = min

(x′,r′)∈C
‖x− x

′‖22 + k(r − r
′)2 , (6)

where k is used to weight the scale component differently

from the space component. In practice k depends on the

image resolution and the range of scales. In Section 4 we

discuss the choice of k.

If we consider the maximum projection of d(x; r) along

the radial component, we obtain a function of x, whose lo-

cal maxima are the centerline points for all the values of r.

Therefore, if we train a regressor to output the values of d,

the problem of multiscale centerline detection is reduced to

the problem of finding local maxima in the projected image,

see Fig. 4(f).

Moreover, function d(x; r) is defined so that points in C
are local maxima of d not only along the spatial dimensions,

but also along the radial component, as shown in Fig. 4(e).

Therefore, we can easily find the scale corresponding to a

centerline point as the one that gives the maximal value for

that point.

We now want to learn a regressor y(·; r) that returns the

values of this new d function. The simplest way would be

to discretize the range of possible scales r into a finite set

of scales and to use the fixed-radius method of Section 3.1

to learn one regressor ϕr for each scale in this set. This ap-

proach, however, decreases the number of training samples

available to train each regressor, which in our experience

severely impairs performance.

An alternative approach is to rely on scale-space the-

ory [15] to train a single regressor ϕr0 for radius r0. By

properly scaling and normalizing the convolutional filters

used to compute the feature vectors f(x, I), we can use ϕr0

to find the centerlines for all the other radii. The advantage

of this approach is that we can exploit all training samples

to train ϕr0 by rescaling them to have a radius equal to r0.

However, this assumes that the aspect of tubular structures

is scale invariant. When this is not the case, the results are

less accurate, especially for large differences between the

actual radius of the structure and r0.

We therefore adopt a hybrid approach. We learn a set

of regressors {ϕri}i∈S for a small set of regularly sampled

radii. We then apply the scale-space approach for interme-

diate radii and use the closest ri to the scale we want to

predict. In section 4 we discuss how these radii are selected.



3.3. Computing the Feature Vectors

Many options are available to compute the feature vec-

tors f(x, I), such as Haar wavelets, steerable filters, or Ga-

bor filters. Recent work [20] has shown that learning a set of

convolutional filters via sparse coding techniques can pro-

duce expressive features that perform well on linear struc-

tures. We therefore take f(x, I) to be

f(x, I) = [(f1 ∗ I)(x), . . . , (fM ∗ I)(x)]⊤ , (7)

where the fi’s are convolutional filters learned in a unsu-

pervised way as in [20] from a set of training images, and

applied to image I .

In the case of 2D images, we used M = 121 filters. In

the case of 3D volumes, the number of possible orientations

of the tubular structures is significantly larger and therefore

more filters should be used. We found it most effective to

learn first a filter bank of M = 121 filters and then extend it

by rotating the learned filters at different orientations, 14 in

practice. To speed up the convolutions required to compute

the descriptor in Eq. (7), we rely on the technique intro-

duced in [21], which approximates the filters {fi} with a set

of separable ones.

The convolutional filters we used in our experiments and

the separable ones used to approximate them are shown

in the supplementary material. Moreover, we demonstrate

their power by comparing the performances of our method

using these learned filters against using it with other filters.

3.4. Non­Maximum Suppression

Applying our method to an N -dimensional image, yields

an (N + 1)-dimensional one, with N spatial dimensions

and one scale dimension. Our method is designed to re-

spond maximally at the centerlines in scale-space. To find

these local maxima, we first compute a N -dimensional im-

age by keeping for each location the maximum along the

radii, and saving the radius corresponding to the maximum.

We then perform a Canny-like non-maximum suppression

by keeping only the locations that correspond to a local

maximum along a line perpendicular to the local orienta-

tion, and within a neighborhood of width defined by the

radius. We estimate the orientation using the eigenvectors

of the oriented flux matrix [13], which we found to be more

robust than using the Hessian matrix. Results from this non-

maximum suppression step are shown in Fig. 5(e).

4. Results

In this section, we first introduce the datasets and the

parameters used in our experiments. Then, we describe our

evaluation methodology. Finally, we discuss our results.

(a) (b) (c)

(d) (e) (f)

Figure 5. Segmentation of a 3D Brightfield image stack. (a) Min-

imum projected image; (b) Ground truth centerlines; (c) Ground

truth segmentation . (d) Maximum projection of the function re-

turned by our method; (e) Detected centerlines after non-maxima

suppression; (f) Segmentation obtained from centerlines and radial

estimation as described in Section 4.2.

4.1. Datasets and Parameters

Our method depends on few parameters, namely: the ra-

dial weight k in Eq (6); the size s of the filters used to extract

the features; the range of sampled scales and the number of

trained regressors.

The range of scales sampled for the different datasets is

automatically determined from the ground truth data and

were always sampled uniformly. We optimized the other

parameters by a cross validation procedure on small vol-

umes. We tested our method on the 2D road images and 3D

biological image stacks depicted by Fig. 6. More specifi-

cally we used the following datasets:

• Aerial: Aerial images of road networks. We used a

training set composed of 7 images and used 7 others

for testing. We sampled 10 scales ranging from 5 to

14. We trained 4 regressors at scales 6, 8, 11 and 13

and learned filters of size s = 21. We set k to 1.

• Brightfield: A dataset of 3D image stacks acquired by

brightfield microscopy from biocityne-dyed rat brains.

We used 3 images for training and 2 for testing. We

sample 12 scales corresponding to radii from 1 to 12

microns. We trained 2 regressors at scales 2 and 8. We

learned filters of size s = 21 and used k = 1.

• VC6: Three dimensional brightfield micrographs of

biocytin-labeled cat primary visual cortex layer 6 taken

from the DIADEM challenge data [3]. We used 3 im-

ages for training and 2 for testing. We sampled 6 scales

from 1 to 6, trained 3 regressors at scale 1, 3 and 5. We

used k = 7 and s = 11.

• Vivo2P: Three dimensional in vivo two-photon images

of a rat brain, capturing the evolution of neurons in the



(a) (b) (c)

Figure 6. Centerline Detection Results. (a) Aerial image. (b) Brightfield image stack. (c) VC6 image stack. In each case, we show from

top to bottom the original image, the maximum projection along the radial component of our regressor’s output, centerlines detected by

thresholding after non-maximum suppression, and ground truth centerlines.

neocortex. We used 2 images for training and 3 se-

quences of 3 images for testing. We sampled 3 scales,

0.6, 0.7, and 0.8 microns. We trained one regressor at

scale 0.7, using k = 1 and s = 21.

For training, we randomly sampled 100 000 image lo-

cations within the distance dM to the centerline and other

100 000 from points further than dM to the centerline.

The size of the images ranges from ∼ 105 pixels for the

Aerial dataset to ∼ 108 voxels for Brightfield. The running

time in our Matlab implementation is of several hours for

training and from few minutes to few hours for testing.

4.2. Evaluation

We compare our approach against three of the most pow-

erful model-based methods for centerline detection. Opti-

mally Oriented Flux (OOF) [13], Oriented Flux with Ori-

ented Flux Antisymmetry [14] (OOF+OFA), and Multidi-

rectional Oriented Flux [25] (MDOF). Moreover, to prove

the importance of our regression approach compared to

classification, we also train a GradientBoost classifier to

segment the centerlines from the rest of the images, thus

emulating the approach of [4].

As usually done to evaluate methods extracting one-

pixel-wide curves [16, 18, 25], we introduce a tolerance fac-

tor ρ to perform plot precision-recall (PR) curves analysis.



A predicted centerline point is considered a true positive if it

is at most ρ distant from a ground truth centerline point. We

generate PR curves for all the methods for different value of

ρ. The results for ρ = 2 are shown in Fig. 8(a) and show that

our approach clearly outperforms all other datasets. Curves

for other values of ρ are shown in the supplementary mate-

rial and exhibit the same trend.

We also evaluate the accuracy of the radii we estimate.

Again we follow the same evaluation methodology of [25].

We start by thresholding the image after non-maximum sup-

pression at different values. Then, for each point in the

thresholded image, we construct a sphere using the corre-

sponding estimated radius. In this way we obtain for every

threshold value a full segmentation of the tubular structures,

which we can compare to the ground truth.

Since the ground truth data itself can be inaccurate, we

introduce also in this case a tolerance factor δ, and eliminate

from comparison points that are closer than δ r from the

surface of a ground truth tube of radius r.

Fig. 8(b) shows the precision-recall results for δ = 0.4
and graphs for other values of δ are given in the supplemen-

tary material. In this case also, our method outperforms all

the others for all the relevant ranges of precision and recall.

We observe the biggest improvement for the Aerial

dataset. There, model-based methods do worst because they

respond strongly to bright polygonal objects such as houses,

as can be seen in Fig. 7. Learning-based methods can be

taught to discount them, and in this case, classification does

better than hand-crafted methods, but still not as well as our

approach. Classification is also competitive on the Vivo2P

dataset. The reason is that there are mainly thin branches

in this dataset. However, our method gives the higher accu-

racy, especially for the radial estimation.

On the Brightfield and VC6 datasets, our approach still

does best but classification does worst, especially in Bright-

field case, due to the presence of very wide branches. As

shown in Fig. 1, in such cases, the maximum response is

not necessarily on the centerline and non-maxima suppres-

sion behaves badly. Our regression-based approach avoids

this problem. As observed in [25], the antisymmetric term

introduced by OFA degrades the results with respect to OOF

for very irregular structures. However, with and without it,

OOF is more sensitive than our algorithm to strong artifacts

and image noise, which are hard to ignore for hand-crafted

methods.

Only for the segmentation results on the Brightfield

dataset and for very high recall values, does the precision of

our approach significantly degrade. This is due to the sensi-

tivity of our method to thin and faint structures. It is needed

to detect the smallest branches but, inevitably, makes it also

respond, albeit weakly, to noise. Moreover, in this range

of recall values, the centerline localization accuracy of the

other methods becomes very low, making their results es-

(a) (b) (c) (d) (e) (f)
Ground OOF OOF+OFA MDOF Classification Our
Truth Approach

Figure 7. Centerline detection on Aerial images. Top row: Raw

image and responses returned by the different methods. Bottom

row: Ground truth and extracted centerlines.

sentially meaningless.

5. Conclusion

We have introduced an efficient regression-based ap-

proach to centerline detection, which we showed to out-

perform both methods based on hand-designed filters and

classification-based approaches.

We believe our approach to be very general and appli-

cable to other linear structure detection tasks when training

data is available. For example, given a training set of natural

images and the contours of the objects present in the images,

our framework should be able to learn to detect such con-

tours in new images as was done in [2]. This is a direction

we will explore in future work.
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(a) Centerline precision-recall curves for ρ = 2.
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(b) Segmentation precision-recall curves for δ = 0.4.

Figure 8. Precision Recall curves. Our method outperforms the others on all the datasets we considered, both for centerline detection and

joint centerline and radius estimation.
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