
A Fast Local Descriptor for Dense Matching∗

Engin Tola Vincent Lepetit Pascal Fua

Computer Vision Laboratory

École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

{engin.tola,vincent.lepetit,pascal.fua}@epfl.ch

Abstract

We introduce a novel local image descriptor designed

for dense wide-baseline matching purposes. We feed our

descriptors to a graph-cuts based dense depth map esti-

mation algorithm and this yields better wide-baseline per-

formance than the commonly used correlation windows for

which the size is hard to tune. As a result, unlike compet-

ing techniques that require many high-resolution images to

produce good reconstructions, our descriptor can compute

them from pairs of low-quality images such as the ones cap-

tured by video streams.

Our descriptor is inspired from earlier ones such as SIFT

and GLOH but can be computed much faster for our pur-

poses. Unlike SURF which can also be computed efficiently

at every pixel, it does not introduce artifacts that degrade

the matching performance.

Our approach was tested with ground truth laser

scanned depth maps as well as on a wide variety of im-

age pairs of different resolutions and we show that good

reconstructions are achieved even with only two low quality

images.

1. Introduction

Though dense shot-baseline stereo matching is well un-

derstood [22, 7], its wide baseline counterpart is, by con-

trast, much more challenging due to large perspective dis-

tortions and increased occluded areas. It is nevertheless

worth addressing because it can yield more accurate depth

estimates while requiring fewer images to reconstruct a

complete scene.

Large correlation windows are not appropriate for wide-

baseline matching because they are not robust to perspec-

tive distortions and tend to straddle areas of different depths

or partial occlusions. Thus, most researchers favor sim-

ple pixel differencing [21, 5, 14] or correlation over very

small windows [23]. They then rely on optimization tech-

niques such as graph-cuts [14] or PDE based diffusion op-

∗This work was supported in part by funds of the European Commis-

sion under the IST-project 034307 DYVINE (Dynamic Visual Networks).

Figure 1. Depth maps for view-based synthesis: Top row: Two

800 × 600 calibrated images we use as input. Bottom row: On the

left, the depth map computed using DAISY and on the right, depth

map computed using normalized-cross correlation, which could

not handle the large perspective and contrast change between the

two input images.

erators [24] to enforce spatial consistency. The drawback

of using small image patches is that reliable image infor-

mation can only be obtained where the image texture is of

sufficient quality. Furthermore, the matching becomes very

sensitive to illumination changes and repetitive patterns.

An alternative to performing dense wide-baseline match-

ing is to first match a few feature points, triangulate them,

and then locally rectify the images. This approach, how-

ever, potentially is not without problems. If some matches

are wrong and are not detected as such, gross reconstruc-

tion errors will occur. Furthermore, image rectification in

the triangles may not be sufficient if the scene within can-

not be treated as locally planar.

We, instead, advocate replacing correlation windows

with local region descriptors, which lets us take advantage

of powerful global optimization schemes such as graph-cuts

to force spatial consistency. Existing local region descrip-

tors such as SIFT [17] or GLOH [19] have been designed

for robustness to perspective and lighting changes and have

1

proved successful for sparse wide-baseline matching. How-

ever, they are much more computationally demanding than

simple correlation. Thus, for dense wide-baseline match-

ing purposes, local region descriptors have so far only been

used to match a few seed points [27] or to provide con-

straints on the reconstruction [24].

We, therefore, introduce a new descriptor that retains

the robustness of SIFT and GLOH and can be computed

quickly at every single image pixel. Its shape is closely re-

lated to that of [26], which has been shown to be optimal

for sparse matching but is not designed for efficiency. We

use our descriptor for dense matching and view-based syn-

thesis using stereo-pairs which have too large a baseline for

standard correlation-based techniques to work, as shown in

Fig. 1. For example, on a standard laptop, it takes about 5

seconds to perform the computations using our descriptor

over all the pixels of a 800×600 image, whereas it takes

over 250 seconds using SIFT. Furthermore, it gives better

results than SIFT, SURF, NCC and pixel differencing as will

be shown using laser scanner data as a reference.

To be specific, SIFT and GLOH owe much of their

strength to the use of gradient orientation histograms, which

are relatively robust to distortions. The more recent SURF

descriptor [4] approximates them by using integral images

to compute the histograms bins. This method is compu-

tationally effective with respect to computing the descrip-

tor’s value at every pixel but does away with SIFT’s spatial

weighting scheme. All gradients contribute equally to their

respective bins, which results in damaging artifacts when

used for dense computation. The key insight of this paper is

that computational efficiency can be achieved without per-

formance loss by convolving orientation maps to compute

the bin values. This lets us match relatively large patches

— 31×31 — at an acceptable computational cost and im-

prove robustness in unoccluded areas over techniques that

use smaller patches. Using large areas requires to handle

occlusion boundaries properly though and we address this

issue by using different masks at each location and select

the best one by using an EM framework. This is inspired by

the earlier works of [11, 13, 12] where multiple or adaptive

correlation windows are used.

After discussing related work in Sec. 2, we introduce our

new local descriptor and present an efficient way to com-

pute it in Sec. 3. In Sec. 4 we detail our EM framework to

handle occlusions. Finally, in Sec. 5, we present our dense

reconstruction results, compare our algorithm’s results with

those of [23] and give ground truth comparison results with

other descriptors including SIFT, SURF, NCC and pixel dif-

ferencing with increasing baseline.

2. Related Work

Even though multi-view 3–D surface reconstruction has

been investigated for many decades [22, 7], it is still far

from being completely solved due to many sources of er-

rors such as perspective distortion, occlusions, and texture-

less areas. Most state-of-the-art methods rely on first using

local measures to estimate the similarity of pixels across

images and then on imposing global shape constraints us-

ing dynamic programming [3], level sets [9], space carv-

ing [15], graph-cuts [21, 6, 14], PDE [1, 24], or EM [23].

In this paper, we do not focus on the method used to im-

pose the global constraints and use a standard one [6]. In-

stead, we concentrate on the similarity measure all these

algorithms rely on.

In a short baseline setup, reconstructed surfaces are often

assumed near fronto-parallel, so the similarity between pix-

els can be measured by cross-correlating square windows.

This is less prone to errors compared to pixel differencing

and allows normalization against illumination changes.

In a wide-baseline setup, however, large correlation win-

dows are especially affected by perspective distortions and

occlusions. Thus, wide-baseline methods [1, 14, 24, 23]

tend to rely on very small correlation windows or revert to

point-wise similarity measures, which loose the discrim-

inative power larger windows could provide. This loss

can be compensated by using multiple [2, 24] or high-

resolution [24] images. The latter is particularly effective

because areas that appear uniform at a small scale are often

quite textured when imaged at a larger one. However, even

then, lighting changes remain difficult to handle. For exam-

ple, [24] shows results either for wide baseline without light

changes, or with light changes but under a shorter baseline.

As we shall see, our feature descriptor reduces the need

for higher-resolution images and achieve comparable re-

sults using fewer number of images. It does so by con-

sidering large image patches while remaining stable under

perspective distortions. Earlier approaches to this problem

relied on warping the correlation windows [8]. However the

warps were estimated from a first reconstruction obtained

using classical windows, which is usually not practical in

wide baseline situations. By contrast, our method does not

require an initial reconstruction.

Local image descriptors have already been used in dense

matching, though in a more traditional way, to match only

sparse pixels that are feature points [25, 17]. In [24, 27],

these matched points are used as anchors for computing the

full reconstruction. [27] propagates the disparities of the

matched feature points to their neighbors, while [24] uses

them to initialize an iterative estimation of the depth maps.

To summarize, local descriptors have already proved

their worth for dense wide baseline matching, but only in

a limited way. This is due in part to their high computa-

tional cost and in past their sensitivity to occlusions. The

technique we propose addresses both issues.

direction−j

Figure 2. The DAISY descriptor. Each circle represents a region

where the radius is proportional to the standard deviations of the

Gaussian kernels and the ’+’ sign represents the locations where

we sample the convolved orientation maps center being a pixel

location where we compute the descriptor. By overlapping the

regions we achieve smooth transitions between the regions and a

degree of rotational robustness. The radius of the outer regions are

increased to have an equal sampling of the rotational axis which is

necessary for robustness against rotation.

3. Our Local Descriptor

In this section, we first briefly describe SIFT [17] and

GLOH [19]. We then introduce our DAISY descriptor and

discuss both its relationship with them and its greater effec-

tiveness for dense computations. The shape of DAISY is

similar to that of [26], but it is designed for computational

efficiency.

3.1. SIFT and GLOH

SIFT and GLOH before PCA dimensionality reduction,

are 3–D histograms in which two dimensions correspond to

image spatial dimensions and the additional dimension to

the image gradient direction. They are computed over local

regions, usually centered on feature points but sometimes

also densely sampled for object recognition tasks [10, 16].

Each pixel belonging to the local region contributes to

the histogram depending on its location in the local region,

and on the orientation and the norm of the image gradient at

its location: As depicted by Fig. 3(a), when an image gradi-

ent vector computed at a pixel location is integrated to the

3D histogram, its contribution is spread over 2× 2× 2 = 8
bins to avoid boundary effects. More precisely, each bin is

incremented by the value of the gradient norm multiplied

by a weight inversely proportional to the distances between

the pixel location and the bin boundaries, and also to the

distance between the pixel location and the one of the key-

point. As a result, each bin contains a weighted sum of the

norms of the image gradients around its center, where the

weights roughly depend on the distance to the bin center.

3.2. Replacing Weighted Sums by Convolutions

In our descriptor, we replace the weighted sums of gra-

dient norms by convolutions of the original image with sev-

eral oriented derivatives of Gaussian filters. We will see

that this gives the same kind of invariance as the SIFT

and GLOH histogram building, but much faster for dense-

matching purposes. More specifically, we compute the

G
Σ
o = GΣ ∗

(
∂I

∂o

)+

(1)

convolutions where GΣ is a Gaussian kernel, o is the ori-

entation of the derivative and the operator (.)+ is such that

(a)+ = max(a, 0). We refer to the convolution results G
Σ
o

as convolved orientation maps. As we will detail below,

we will build our descriptor by reading the values in the

convolved orientation maps. We will refer to the oriented

derivatives of the image Go =
(

∂I

∂o
)+ as orientation maps.

To make the link with SIFT and GLOH, notice that each

location of the convolved orientation maps contains a value

very similar to what a bin in SIFT or GLOH contains: a

weighted sum computed over an area of gradient norms.

The weights are slightly different: We use a Gaussian ker-

nel whereas the weighting scheme of SIFT and GLOH cor-

responds to a triangular shaped kernel since the weights are

linear. It is also related with tensor voting in [18] if we think

of each location in our orientation maps as a voting compo-

nent and our aggregation kernel as the voting weights.

The final values in these descriptors and ours will there-

fore not be exactly equal; nevertheless, our descriptor cap-

tures a very similar behavior. Moreover, this gives new in-

sights on what makes SIFT work: The Gaussian convolu-

tion simultaneously removes some noise, and gives some

invariance to translation to the computed values. This is

also better than integral image-like computations of his-

tograms [20] in which all the gradient vectors contribute

the same: We can very efficiently reduce the influence of

gradient norms from distant locations.

Our primary motivation here is to reduce the compu-

tational requirements, since convolutions can be imple-

mented very efficiently especially when using Gaussian fil-

ters, which are separable. Moreover, we can compute the

orientation maps for different sizes at low cost: Convolu-

tion with large Gaussian kernel can indeed be obtained from

several consecutive convolutions with smaller kernels. In-

deed if we have already computed G
Σ1

o we can efficiently

compute G
Σ2

o with Σ2 > Σ1 by convolving G
Σ1

o ,:

G
Σ2

o = GΣ2
∗

(
∂I

∂o

)+

= GΣ∗GΣ1
∗

(
∂I

∂o

)+

= GΣ∗G
Σ1

o ,

with Σ =
√

Σ2
2 − Σ2

1.

3.3. The DAISY Descriptor

We now give a more formal definition of our DAISY de-

scriptor. For a given input image, we first compute eight ori-

entation maps, G, one for each quantized direction, where

��
��
��

��
��
��

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

wu

u

v

wv

ori

bins

kernel

keypoint
pixelgrid

G
Σ

1

G
Σ

1

G
Σ

1

Go

Σ1

d

do

d

do

d

do

2

1

n

()
+

()
+

()
+ G

Σ

G
Σ

G
Σ

Go

Σ2Go

(a) (b)

Figure 3. Relationship between SIFT and DAISY. (a) SIFT is a 3–D histogram computed over a local area where each pixel location

contributes to bins depending on its location and the orientation of its image gradient, the importance of the contribution being proportional

to the norm of the gradient. Each gradient vector is spread over 2× 2× 2 bins to avoid boundary effects, and its contribution to each bin is

weighted by the distances between the pixel location and the bin boundaries. (b) DAISY computes similar values but in a dense way. Each

gradient vector also contributes to several of the elements of the description vector, but the sum of the weighted contributions is computed

by convolution for better computation times. We first compute orientation maps from the original images, which are then convolved to

obtain the convolved orientation maps G
Σi
o

. The values of the G
Σi
o

correspond to the values in the SIFT bins, and will be used to build

DAISY. By chaining the convolutions, the G
Σi
o

can be obtained very efficiently.

Go(u, v) equals the image gradient at location (u, v) for di-

rection o if it is bigger than zero, else it is equal to zero.

The reason for this is to preserve the polarity of the in-

tensity change. Each orientation map is then convolved

several times with Gaussian kernels of different Σ values

to obtain convolved orientation maps for different sized

regions. As mentioned in the previous section, this can

be done efficiently by computing these convolutions recur-

sively. Fig. 3(b) summarizes the required computations.

As depicted by Fig. 2, at each pixel location, DAISY

consists of a vector made of values from the convolved ori-

entation maps located on concentric circles centered on the

location, and where the amount of Gaussian smoothing is

proportional to the radius of the circles.

Let hΣ(u, v) be the vector made of the values at location

(u, v) in the orientation maps after convolution by a Gaus-

sian kernel of standard deviation Σ:

hΣ(u, v) =
[
G

Σ
1 (u, v), . . . ,GΣ

8 (u, v)
]⊤

,

where G
Σ
1 , G

Σ
2 , and G

Σ
8 denote the Σ-convolved orienta-

tion maps. We normalize these vectors to unit norm, and de-

note the normalized vectors by h̃Σ(u, v). The normalization

is performed in each histogram independently to be able to

represent the pixels near occlusions as correct as possible.

If we were to normalize the descriptor as a whole, then the

descriptors of the same point that is close to an occlusion

would be very different in two images.

The full DAISY descriptor D(u0, v0) for location

(u0, v0) is then defined as a concatenation of h̃ vectors, and

can be written with a slight abuse of notation as:

D(u0, v0) =[
h̃
⊤

Σ1
(u0, v0),

h̃
⊤

Σ1
(l1(u0, v0, R1)), · · · , h̃⊤

Σ1
(lN (u0, v0, R1)),

h̃
⊤

Σ2
(l1(u0, v0, R2)), · · · , h̃⊤

Σ2
(lN (u0, v0, R2)),

h̃
⊤

Σ3
(l1(u0, v0, R3)), · · · , h̃⊤

Σ3
(lN (u0, v0, R3))

]⊤
,

where lj(u, v, R) is the location with distance R from (u, v)
in the direction given by j when the directions are quantized

into N values. In the experiments presented in this paper,

we use N = 8 directions with R1 = 2.5, R2 = 3R1, R3 =
6R1 and Σ1 = 2.55, Σ2 = 3Σ1, Σ3 = 5Σ1. Thus, our

descriptor is made of 8+ 8× 3× 8 = 200 values, extracted

from 25 locations and 8 orientations.

We use a circular grid instead of SIFT’s regular one since

it has been shown to have better localization properties [19].

In that sense, our descriptor is closer to GLOH before PCA

than to SIFT. Also, the descriptor is naturally resistant to ro-

tational perturbations as well by the use of isotropic Gaus-

sian kernels with a circular grid. The overlapping regions

ensure a smooth changing descriptor along the rotation axis

and by increasing the overlap, we can further increase the

robustness up to a certain point.

One advantage of the circular design and using symmet-

ric kernels is that the descriptor can be computed in any

orientation simply by rotating the sampling grid without the

need to recompute convolved orientation maps. The his-

tograms will then also need to be shifted circularly but the

total operation can be implemented very efficiently and the

Image Size DAISY SIFT

800x600 5 252

1024x768 10 432

1290x960 13 651
Table 1. Computation Time Comparison (in seconds)

overhead is insignificant.

4. From Descriptor to Depth Map

We assume that we are given at least 2 calibrated gray-

scale images and we compute the dense depth map of the

scene with respect to a particular viewpoint which can ei-

ther be equal to one of the input view points or it can be a

completely different virtual position.

To perform dense matching, we use DAISY to measure

similarities across images which we feed to the graph-cut-

based reconstruction method of [6]. To properly handle

occlusions, we incorporate an occlusion map, which is the

counterpart of the visibility maps in other reconstruction al-

gorithms [14]. The reconstruction and occlusion map are

estimated by EM and a quick formalization is given below.

We exploit the occlusion map to define binary masks

over our descriptors, which we use to avoid integrating oc-

cluded parts in the similarity estimation. We introduce pre-

defined masks that enforce the spatial coherence of the oc-

clusion map, and show they allow for proper handling of

occlusions.

4.1. Formalization

Given a set of n calibrated images of the scene, we de-

note their descriptors as by D1:n. We estimate the dense

depth map Z for a given viewpoint by maximizing:

ζ = p(Z,O | D1:n) ∝ p(D1:n | Z,O)p(Z,O) . (2)

where we also introduced an occlusion map term O that

will be exploited below to estimate the similarities between

image locations. As in [6], we assume some smoothness

on the depth map, and also on our occlusion map using a

Laplacian distribution.

For the data driven posterior, we also assume indepen-

dence between pixel locations:

p(D1:n | Z,O) =
∏

x

p
(
D1:n(x)

∣∣∣ Z,O
)

. (3)

Each term p (D1:n(x) | Z,O) of Eq. 3 is estimated using

our descriptor. Because the descriptor considers relatively

large regions, we introduce binary masks computed from

the occlusion map O, as explained in the next section, to

avoid including occluded parts into our similarity score.

4.2. Using Masks over the Descriptor

Without occlusion-handling the p (D1:n(x) | Z,O) term

of Eq. 3 would depend on distances of the form ‖Di(M)−

(a) (b)

Figure 4. Binary masks for occlusion handling: We use binary

masks over the descriptors to estimate location similarities even

near occlusion boundaries. In this figure, a black disk with a white

circumference corresponds to “on” and a white disks to “off”. (a)

We use the occlusion map to define the masks; and in (b) pre-

defined masks makes easy it to enforce spatial coherence and to

speed-up the convergence of EM estimation.

Dj(M)‖, where Di(M) and Dj(M) are the descriptors at

locations obtained by projecting the 3–D point M defined

by location x and depth Z(x) in the virtual view in image i.

However, simply using the Euclidean distance

‖Di(M) − Dj(M)‖ is not robust to partial occlu-

sions: Even for a good match, parts of the two descriptors

Di(M) and Dj(M) can be very different when the

projection of M is near an occluding boundary.

We therefore introduce binary masks {Mm(x)} such

as the ones depicted in Fig. 4, that take into account only

the visible parts when computing the distances between de-

scriptors. Since the descriptor is built from 25 locations,

these binary masks are also defined as 25 length vectors.

In order for the masks to depend on the current estimate

of the occlusion map O, we tried three different strategies:

the simplest one depicted by Fig. 4(a) consists in threshold-

ing the current estimate of the occlusion map O at the loca-

tions used by the descriptor to obtain a single binary mask

Mm(x). The two other strategies use the predefined masks

depicted by Fig. 4(b) that have a high spatial coherence. In

the second strategy, each mask has a different probability

which favors masks having large visible areas with similar

depth values:

p(Mm(x)|Z,O) =
1

Y

(
vm +

1

σ2
m(Z) + 1

)
(4)

where vm is the average visible pixel number, σm(Z) is

the depth variance within the mask region, and Y is the sum

of all mask probabilities. The last strategy is a more radical

version of the second strategy, where we only use the most

probable mask instead of a mixture.

From a probabilistic point of view, that simply

means we consider the following integration to compute

p (D1:n(x)|Z,O):

(a) (b) (c)

(d) (e) (f) (g)
Figure 5. Using low-resolution versions of the Brussels im-

ages [23]. (a,b,c) Three 768×510 versions of the original

2048×1360 images. (d,e) The depth-map computed using images

(a) and (b) seen in the perspective of image (c) and the correspond-

ing re-synthesized image. Note that the locations where there are

people in one image and not in the other are correctly marked as

occlusions. (f,g) The depth-map and synthetic image generated

using all three images. Note that the previously occluded areas are

now filled and that the people have been erased from the synthetic

image.

p (D1:n(x)|Z,O) =∑
m p (D1:n(x)|Z,O,Mm(x)) p (Mm(x)|Z,O)

(5)

In the first and third strategy, we use only one mask

whereas in the second strategy, Eq. 5 is a mixture computed

from several masks.

The mask probabilities are re-estimated at each step of

the EM algorithm. In our experiments, using predefined

masks resulted in more acceptable reconstructions and the

last strategy, which always resulted in a much faster conver-

gence towards a satisfying solution, was selected. These

good performances over the other strategies can be ex-

plained by the fact that the chosen masks enforce the spatial

consistency when comparing the descriptors.

Finally, following [6], the term p (D1:n(x) | Z,O) of

Eq. 3 is taken to be Lap (D(D1:n(x) | Z,O); 0, λm) where

D is computed as

2(n − 2)!

n!

n∑

i=1

n∑

j=i+1

√√√√√
25∑

k=1

M[k]
∥∥∥D[k]

i (x) − D
[k]
j (x)

∥∥∥
2

∑25
q=1 M

[q]
,

(6)

where M[k] is the kth element of M, and D
[k]
i (M) the kth

histogram h̃ in Di(M).

Figure 6. Low resolution and slightly blurry images: Top: Two

input 640×480 images taken by a webcam. Bottom: On the left,

reconstruction obtained using DAISY and on the right using NCC.

5. Results

To compare DAISY’s performance against that of other

descriptors, we used the images of Fig. 7 and an associ-

ated depth map obtained using a laser scanner, which we

treat as a reference1. We used DAISY, SIFT, SURF, NCC

and pixel differencing to densely compute matching scores.

They are then all handled similarly, as described in Sec-

tion 4, to produce depth maps.2 The figure’s second row

shows that DAISY produces fewer artifacts than the other

descriptors for a specific pair. The graph on the third row

shows that this is in fact true for all pairs we tested and, the

wider the baseline, the more significant the difference.

In figure 6, we tested DAISY with low resolution

640×480, somewhat blurry webcam images such as the

ones that can be obtained from video streams and DAISY

again performs much better than correlation. SIFT produces

a visually similar result but takes about 50 times longer to

compute.

To compare our method to one of the best current tech-

niques [23], we ran our algorithm on two sets of image pairs

that were used in that paper, the Rathaus sequence of Fig. 9

and the Brussels sequence of Fig. 5. But instead of using

the original 3072×2048 images, whose resolution is high

enough for apparently blank areas to exhibit usable texture,

we used 768×512 images in which this is not true. DAISY

nevertheless achieved visually similar results.

Fig. 5 also highlights the effectiveness of our occlusion

handling. When using only two images, the parts of the

church that are hidden by people in one image and not in the

other are correctly detected as occluded. When using three

images, the algorithm returns an almost full depth map that

lets us erase the people in the synthetic images we produce.

1Laser scanned fountain sequence, http://cvlab.epfl.ch/test data, 2008
2Occlusions are handled in the same way in all cases, as discussed at

the beginning of Section 4. The only difference is that we do not use binary

masks to modify matching scores for descriptors other than DAISY.

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

Error Tolerance

C
o

rr
e

c
t

P
ix

e
l
%

DAISY

SIFT

SURF

NCC

Pixel Diff

12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100

Image Pairs

C
o

rr
e

c
t

P
ix

e
l
%

Figure 7. Comparing against ground truth. First row. In our tests, we match the left-most image against each one of the other five. Second

row. The laser-scan depth-map we use as a reference and five depth-maps computed from the first and third images. From left to right, we

used DAISY, SIFT, SURF, NCC and Pixel Difference. Third row. On the left, we plot the corresponding distributions of deviations from

the laser-scan data, expressed as a fraction of the scene’s depth-range. On the right, we summarize these distributions for the five stereo

pairs of increasing baseline. Each group of bars represents a pair where the baseline increases gradually from left to right. Within groups,

individual bars correspond to DAISY, SIFT, SURF, NCC, and Pixel Difference in that order. Within the bars, the bottom block denotes the

percentage of correctly computed depths where the error threshold is set to be 1% of the scene’s depth range, the middle block 5%, and the

top one 10%. In all cases DAISY does better than the others and the wider the baseline, the most significant the difference.

In Fig. 8 we show more results computed from stereo

pairs with a baseline large enough for standard correlation-

based techniques to fail and with substantial occlusions and

lighting changes whereas we can compute reliable depth

maps which we can use to synthesize realistic new views,

as would be seen from a different perspective. To validate

our approach, for each image pair, we use the perspective

from a third image and compare that image with the one we

synthesize.

6. Conclusion

In this paper, we introduced DAISY a new local de-

scriptor, which is inspired from earlier ones such as SIFT

and GLOH but can be computed much more efficiently for

dense matching purposes. Speed increase comes from re-

placing weighted sums used by the earlier descriptors by

sums of convolutions, which can be computed very quickly.

The experiments suggest that although pixel differencing
or correlation is good for short baseline stereo, wide base-
line requires a more advanced measure for comparison. We
propose to use DAISY for this purpose, as it is very efficient
and it produces good reconstructions. Another advantage of
our method is that we can use small images for computing
reconstructions. This is important as it means that we can
use our algorithm to process video streams which are gen-
erally at most 640×480 in size.

References

[1] L. Alvarez, R. Deriche, J. Weickert, J., and Sanchez. Dense

Disparity Map Estimation Respecting Image Discontinuities:

A PDE & Scale-Space Based Approach. JVCIR, 13, 2002.

[2] N. Ayache and F. Lustman. Fast and Reliable Passive Trinoc-

ular Stereovision. In ICCV, June 1987.

[3] H. Baker and T. Binford. Depth from edge and intensity

based stereo. In IJCAI, volume 2, pages 631–636, 1981.

[4] H. Bay, T. Tuytelaars, and L. V. Gool. Surf: Speeded up

robust features. In ECCV, 2006.

[5] S. Birchfield and C. Tomasi. A pixel dissimilarity measure

that is insensitive to image sampling. PAMI, 20(4):401–406,

Apr. 1998.

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate En-

ergy Minimization via Graph Cuts. PAMI, 23(11), 2001.

[7] M. Brown, D. Burschka, and G. Hager. Advances in compu-

tational stereo. PAMI, 25(8):993–1008, Aug. 2003.

[8] F. Devernay and O. D. Faugeras. Computing Differential

Properties of 3–D Shapes from Stereoscopic Images without

3–D Models. In CVPR, 1994.

[9] O. Faugeras and R. Keriven. Complete Dense Stereovision

using Level Set Methods. In ECCV, 1998.

[10] L. Fei-Fei and P. Perona. A Bayesian Hierarchical Model for

Learning Natural Scene Categories. In CVPR, 2005.

[11] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and

binocular stereo. IJCV, 14:211–226, 1995.

Figure 8. Depth maps and resynthesized images. In each row, the first two images are the inputs to our stereo-matcher. The third one is

not used to compute the depth but only to validate the quality of the fourth one, which is synthesized from the first two using the DAISY

depth map shown in fifth position. The final image is the depth map computed using normalized cross-correlation. The occluded areas

are overlaid in red in the synthetic images. Note that in the last row, the two input images were lit differently which slightly degrades the

performance but nevertheless allows credible resynthesis.

(a) (b)

(c) (d)

(e) (f)
Figure 9. Results on low-resolution versions of the Rathaus im-

ages [24]. (a,b,c) Three input images of size 768 × 512 instead of

the 3072 × 2048 versions that were used in [23]. (d) Depth map

computed using all three images (e) A fourth image not used for

reconstruction. (f) Image synthsized using the depth map and the

image texture in (a). Note how similar it is to (e). The holes are

caused by the fact that a lot of the texture in (e) is not visible in (a)

[12] S. Intille and A. Bobick. Disparity-space images and large

occlusion stereo. In ECCV, 1994.

[13] T. Kanade and M. Okutomi. A Stereo Matching Algorithm

with an Adaptative Window: Theory and Experiment. PAMI,

16(9):920–932, September 1994.

[14] V. Kolmogorov and R. Zabih. Multi-Camera Scene Recon-

struction via Graph Cuts. In ECCV, 2002.

[15] K. Kutulakos and S. Seitz. A Theory of Shape by Space

Carving. IJCV, 38(3):197–216, 2000.

[16] S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Fea-

tures: Spatial Pyramid Matching for Recognizing Natural

Scene Categories. In CVPR, 2006.

[17] D. Lowe. Distinctive Image Features from Scale-Invariant

Keypoints. IJCV, 20(2):91–110, 2004.

[18] G. Medioni, C. Tang, and M. Lee. Tensor voting: Theory and

applications. In Reconnaissance des Formes et Intelligence

in Artificielle, 2000.

[19] K. Mikolajczyk and C. Schmid. A Performance Evaluation

of Local Descriptors. PAMI, 27(10):1615–1630, 2004.

[20] F. Porikli. Integral histogram: a fast way to extract his-

tograms in cartesian spaces. In CVPR, 2005.

[21] S. Roy and I. Cox. A Maximum-Flow Formulation of the

N-camera Stereo Correspondence Problem. In ICCV, 1998.

[22] D. Scharstein and R. Szeliski. A taxonomy and evaluation of

dense two-frame stereo correspondence algorithms. IJCV,

47(1/2/3):7–42, April-June 2002.

[23] C. Strecha, R. Fransens, and L. V. Gool. Combined Depth

and Outlier Estimation in Multi-View Stereo. In CVPR,

2006.

[24] C. Strecha, T. Tuytelaars, and L. V. Gool. Dense Matching

of Multiple Wide-Baseline Views. In ICCV, 2003.

[25] T. Tuytelaars and L. VanGool. Wide Baseline Stereo Match-

ing based on Local, Affinely Invariant Regions. In BMVC,

2000.

[26] S. Winder and M. Brown. Learning local image descriptors.

In CVPR, 2007.

[27] J. Yao and W.-K. Cham. 3–D Modeling and Rendering from

Multiple Wide-Baseline Images. Signal Processing: Image

Communication, 21:506–518, 2006.

