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Abstract

Binary keypoint descriptors provide an efficient alterna-

tive to their floating-point competitors as they enable faster

processing while requiring less memory. In this paper, we

propose a novel framework to learn an extremely compact

binary descriptor we call BinBoost that is very robust to

illumination and viewpoint changes. Each bit of our de-

scriptor is computed with a boosted binary hash function,

and we show how to efficiently optimize the different hash

functions so that they complement each other, which is key

to compactness and robustness. The hash functions rely on

weak learners that are applied directly to the image patches,

which frees us from any intermediate representation and lets

us automatically learn the image gradient pooling configu-

ration of the final descriptor. Our resulting descriptor sig-

nificantly outperforms the state-of-the-art binary descrip-

tors and performs similarly to the best floating-point de-

scriptors at a fraction of the matching time and memory

footprint.

1. Introduction

Local feature descriptors are ubiquitous in numerous

computer vision applications, such as visual search, 3D re-

construction and panorama stitching. They seek a transfor-

mation of the input intensity patch that is invariant to un-

wanted artifacts such as illumination and viewpoint changes

and typically involve a high-dimensional floating-point vec-

tor that encodes a robust representation of the patch [17, 2].

For increased invariance to local geometric transformations,

most methods aggregate or pool the local evidence about

pre-selected regions within the patch. The extent, location

and shape of these regions defines the pooling configuration

of the descriptor.

As image databases grow in size, modern solutions to

local feature-based image indexing and matching must not

only be accurate but also highly efficient to remain vi-

able. Binary descriptors are of particular interest as they

require far less storage capacity and offer much faster
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Figure 1. BinBoost learns a boosted hash function Cd for each de-

scriptor bit, jointly optimized over both the feature weighting (bd)

and pooling strategy (hd). The Cd’s are iteratively optimized

over labeled similar and dis-similar sample pairs of patches. At

each iteration incorrectly hashed samples, like the pair of different

patches on the right mistakenly assigned to the same Cd, are as-

signed a larger weight, while the weight of correctly hashed sam-

ples is reduced, like the pair on the left. Hence, the next bit tends

to correct for the errors of the preceding ones.

matching times than conventional floating point descrip-

tors [9, 27, 4, 15, 22, 30], or even quantized descriptors [3].

In addition, they can be used directly in hash table tech-

niques for efficient Nearest Neighbor search [20, 18], and

their similarity can be computed very quickly on modern

CPUs based on the Hamming distance.

However, as our experiments show, state-of-the-art bi-



nary descriptors often perform worse than their floating-

point competitors: some are built on top of existing rep-

resentations such as SIFT or GIST by relying on training

data [9, 27], and are limited by the performance of the in-

termediate representation. Others start from raw image in-

tensity patches, but focus on computation speed and rely on

fast-to-compute image features [4, 22, 15, 30], which limit

their accuracy.

To address these shortcomings, we propose a novel su-

pervised learning framework that finds a low-dimensional

but highly discriminative binary descriptor. As shown in

Fig. 1, for each dimension we learn a hash function of the

same form as an AdaBoost strong classifier, that is the sign

of a linear combination of non-linear weak learners. It is

more general and powerful than those used in standard bi-

nary descriptors, which often rely on simple thresholded

linear projections [30]. It also involves the design of a much

more sophisticated objective function, which makes the op-

timization far more challenging. The resulting binary de-

scriptor which we refer to as BinBoost1 significantly out-

performs its binary competitors. Furthermore, with as few

as 64 bits it exhibits a comparable accuracy to state-of-the-

art floating point or quantized descriptors at a fraction of the

storage and matching cost. Nevertheless, it is more complex

to optimize, and we show how to efficiently optimize our

hash functions using boosting. As weak learners, we use

gradient-based image features that are directly applied to

the raw intensity image patches, which frees us from any in-

termediate representation and lets us automatically learn the

image gradient pooling configuration of the final descriptor.

The rest of this paper is organized as follows. In Sec-

tion 2 we discuss related work. In Section 3 we describe our

method: we first show how we construct our set of weak

learners and how we find the Hamming embedding mini-

mizing the exponential loss function. We then explain how

we use this approach to build our binary local feature de-

scriptor and in Section 4 we compare it against the state of

the art methods.

2. Related Work

Many recent techniques form binary descriptors based

on simple pixel intensity comparisons [4, 15, 22]. Huffman

coding [5] and product quantization [13] have also been ex-

plored to compress histogram of oriented gradient descrip-

tors. Similarly, [37] develops a binary edge descriptor based

on a histogram of normalized gradients. Although more ef-

ficient, these hand-designed descriptors are generally not

compact and not as accurate as their floating point equiv-

alents.

Machine learning has been applied to improve both the

efficiency and accuracy of image descriptor matching. Un-

1The reference implementation of BinBoost will be made available.

supervised hashing methods learn compact binary descrip-

tors whose Hamming distance is correlated with the simi-

larity in the original input space [9, 14, 23, 36, 35]. Seman-

tic hashing [23] trains a multi-layer neural network to learn

representative, compact binary codes. Spectral hashing [36]

minimizes the expected Hamming distance between similar

training examples, and was recently extended to optimize

over example affinities [35]. Similarly, [14, 19] find codes

whose Hamming distances well approximate the original

Euclidean ones. In [34, 9], iterative and sequential opti-

mization strategies that find projections with minimal quan-

tization error are explored. While these approaches have

proven highly effective for finding compact binary codes,

they rely on a pre-defined distance or similarity measure

and in many cases are limited to the accuracy of the origi-

nal input space.

Supervised learning approaches can learn feature spaces

tailored to a specific task [12, 16, 27, 34]. They exploit la-

beled example pairs or triplets that encode the desired prox-

imity relationships of the learned metric. A Mahalanobis

distance metric is learned in [12] and optimized with re-

spect to labeled distance constraints. Linear Discriminant

Analysis is applied in [9, 27, 30] to learn discriminative

feature embeddings. Semi-supervised sequential learning

algorithms are proposed in [16, 34] for finding discrimina-

tive projections. Similar to these approaches, most methods

define a linear transformation of the data in either the origi-

nal or a kernelized feature space, and rely on a pre-specified

kernel function to capture non-linearities. They are well-

suited for image categorization and indexing tasks for which

task-specific kernels have been proposed, e.g. [10], how-

ever, they are less applicable to local descriptor matching

where the appropriate choice of kernel function is less well

understood.

Recent descriptor learning methods have emphasized

the importance of learning not only the optimal weight-

ing, but also the optimal shape or pooling configura-

tion of the underlying representation [3, 26, 29]. In [3],

they optimize over different feature selection and pooling

strategies of gradient-based features, however, the crite-

rion considered—the area below the ROC—is not analytical

making it difficult to optimize. Following [3], a convex opti-

mization strategy was developed in [26]. To make learning

tractable, however, a limited set of pooling configurations

was considered and restricted to circular, symmetrically ar-

ranged pooling regions centered about the patch. As shown

in our experiments, our binary descriptor achieves a similar

accuracy to these methods at a fraction of the matching cost.

Jointly optimizing over descriptor weighting and shape

poses a difficult problem due to the potentially large num-

ber of pooling configurations one might encounter. This is

especially true for learning generic shapes where the num-

ber of pooling regions can easily be in the millions, even



for small patch sizes. Fortunately, this is a problem for

which AdaBoost [8] and other boosting methods [7, 32]

are particularly well-suited. Although greedy, boosting is

a provably effective method for constructing a highly accu-

rate predictor from a large (potentially infinite) collection

of constituent parts. The resulting boosting-trick like the

kernel-trick, maps the input to a high-dimensional feature

space, however, the mapping it defines is explicit, with the

learned embedding assumed to be sparse [6, 21]. As a result

and unlike kernel methods, boosting is an efficient way to

find a non-linear transformation of the input that is naturally

parameterized over both the descriptor shape and weighting.

The first application of boosting to learn an image

similarity measure was Boosted Similarity Sensitive Cod-

ing (SSC) [25], which was later extended in [28] to be used

with a Hamming distance. Boosted SSC only considers lin-

ear projections of the input, however, and generally results

in fairly high dimensional descriptions. In [29], we pro-

posed a descriptor we call Low-dimensional Boosted Gra-

dient Map (L-BGM), whose similarity measure models the

correlation between weak learners resulting in a compact

description. We optimized over gradient-based features re-

sulting in a learned representation that closely resembles the

well-known SIFT. Although highly accurate, L-BGM com-

putes a floating point descriptor and therefore its matching

time is costly.

In this paper, we introduce a boosted binary descriptor

that relies on the same image gradient-based features as

[29]. Because it is binary, it is more difficult to optimize,

but it is also much more efficient while being as accurate.

We define a sequential learning method similar to [16, 34]

except, unlike these methods, our boosting approach learns

both the optimal shape and weighting of the features asso-

ciated with each bit. Our descriptor can also be seen as a

two layer neural network [23], since each coordinate of the

descriptor is computed from a linear combination of pooled

image features. As shown in our experiments, this results

in a highly accurate and compact binary descriptor. Unlike

hand-designed representations, we get similar performance

to SIFT with as few as 8 bits, and do significantly better with

increasing bit length, our final performance rivaling that of

the leading binary and floating point descriptors.

3. The BinBoost Descriptor

In this section, we first describe our BinBoost descriptor

and show how to train it efficiently. We then introduce the

gradient-based features we use to define our weak learners.

3.1. Problem formulation

Given an image intensity patch x, we look for a bi-

nary descriptor C(x) = [C1(x), . . . , CD(x)] which maps

the patch to a D-dimensional binary string. For conve-

nience, we will consider that each bit Cd(x) takes its value

in {−1,+1} instead of {0, 1}. We seek to compute each

one as:

Cd(x) = sgn
(

bT
d hd(x)

)

, (1)

which is similar to what an Adaboost [8] classifier does,

and where the hd(x) = [hd,1(x) . . . hd,K(x)]T are K weak

learners weighted by the vector bd = [bd,1 . . . bd,K ]T . Sec-

tion 3.3 describes the weak learners we use in practice.

Our problem formulation is similar to [25] in the sense

that [25] also learned a descriptor CSSC(x) by minimizing

its exponential loss with Adaboost. Expression (1), how-

ever, is more complex than the one used in [25], which con-

sidered functions of the simpler form CSSC
d (x) = bdhd(x),

with bd a scalar and hd a single weak learner. It is also more

general than the one used in most of the previous work on

binary descriptors. It is therefore reasonable to expect that

this expression will make our descriptors more compact, as

is confirmed by our experiments. However, it also results in

a more challenging optimization problem.

Let {(xn,yn, ln)}
N
n=1 be a set of N labeled training

pairs such that ln = +1 if image patches xn and yn cor-

respond to the same physical point, and ln = −1 otherwise.

We solve for the {bd,hd}
D
d=1

in the expression of C(·) by

minimizing the exponential loss on the training data:

L = min
{bd,hd}D

d=1

N
∑

n=1

exp

(

−γ ln

D
∑

d=1

cd(xn,yn;bd,hd)

)

,

(2)
where

cd(x,y;bd,hd) = Cd(x)Cd(y)

= sgn
(

bT
d hd(x)

)

sgn
(

bT
d hd(y)

)

,
(3)

and γ is a parameter of our method—we explain below how

we pick it in practice. Minimizing Eq. (2) aims at reduc-

ing the Hamming distances between descriptors of patches

from positive pairs (ln = +1) while increasing the Ham-

ming distances between descriptors of patches from nega-

tive pairs (ln = −1).

The optimization problem of Eq. (2) is closely related

to the standard AdaBoost formulation [8], with two dif-

ferences. First the cd functions are not weighted, because

for efficiency reasons we want to use the regular Hamming

distances between descriptors instead of the weighted one.

Second, and more importantly, the cd functions are much

more complex than the ones that are usually used, since

they are a product of two strong classifiers. The resulting

optimization is discontinuous and non-convex and in prac-

tice the space of all possible weak learners h is discrete and

prohibitively large. In what follows we develop a greedy

optimization algorithm for solving this difficult problem.



3.2. Greedy optimization

In this section we present a greedy algorithm for jointly

optimizing over the weak classifiers of each bit, hd and their

associated weights bd. We first proceed as in regular Ad-

aBoost. We optimize the {Cd} functions iteratively, and at

iteration d, the Cd function that minimizes Eq. (2) is also

the one that maximizes the weighted correlation of its out-

put and the data labels [24]. Using this fact, at iteration d,

the optimal bd and hd can be taken as

max
bd,hd

N
∑

n=1

ln Wd(n)cd(xn,yn;bd,hd) , (4)

where

Wd(n) = exp

(

−γln

d−1
∑

d′=1

cd′(xn,yn;bd,hd)

)

(5)

is a weighting that is very similar to the one used in reg-

ular Adaboost. This means that pairs that are incorrectly

classified by the previous iterations are assigned a higher

weight, whereas the weight of those correctly classified is

decreased.

The sign function in cd is non-differentiable, and Eq. (4)

is thus still hard to solve. We therefore apply the spectral

relaxation trick [16, 34] and approximate the sign function

using its signed magnitude, sgn(x) ≈ x. This yields:

max
bd,hd

N
∑

n=1

ln Wd(n)cd(xn,yn;bd,hd)

≈ max
bd,hd

N
∑

n=1

ln Wd(n)
(

bT
d hd(xn)

) (

bT
d hd(yn)

)

= max
bd,hd

N
∑

n=1

ln Wd(n)
(

bT
d hd(xn)

) (

hd(yn)
Tbd

)

= max
bd,hd

bT
d

(

N
∑

n=1

ln Wd(n)hd(xn)hd(yn)
T

)

bd .

(6)

We first select a vector hd(x) of suitable weak classifiers

using the algorithm of [25] on the training samples initially

weighted by the Wd(n) weights. The sign function in the

expression of Cd makes bd defined only up to a scale factor,

and given an estimate for hd(x), we solve for bd by looking

for

max
bd

bT
d Mbd, s.t. ‖bd‖2 = 1 (7)

where

M =

N
∑

n=1

ln Wd(n)hd(xn)hd(yn)
T . (8)

Eq. (7) defines a standard eigenvalue problem and the op-

timal weights bd can therefore be found in closed-form as

the eigenvector of M associated with its largest eigenvalue.

Although not globally optimal, this solution returns a

useful approximation to the solution to Eq. (4). Moreover,

thanks to our boosting scheme even a sub-optimal selection

of Cd allows for an effective minimization.

We still have to explain how we choose the γ parameter.

Note that its value is needed for the first time at the end of

the first iteration, and we set this parameter after finding C1

using the formula from regular Adaboost. We use the rule

γ = ν · 1
2
log 1+r1

1−r1
where r1 =

∑N

n=1
W1(n) ln c1(xn,yn)

and ν is a shrinkage parameter used to regularize our opti-

mization as described in [11]. In practice, we use ν = 0.4.

3.3. Weak learners

In our implementation, we rely on weak learners that

consider the orientations of intensity gradients over image

regions [1, 29]. They are parameterized by a rectangular

region R over the image patch x, an orientation e, and a

threshold T , and are defined as

h(x;R, e, T ) =

{

1 if φR,e(x) ≤ T

−1 otherwise
, (9)

with

φR,e(x) =
∑

m∈R

ξe(x,m) /
∑

e′∈Φ,m∈R

ξe′(x,m) , (10)

and

ξe(x,m) = max(0, cos(e− o(x,m)) , (11)

where o(x,m) is the orientation of the image gradient in x

at location m. The orientation e is quantized to take values

in Φ = {0, 2π
q
, 4π

q
, · · · , (q − 1) 2π

q
} with q the number of

quantization bins. As noted in [1] this representation can be

computed efficiently using integral images.

4. Results

In this section, we first describe our evaluation frame-

work. We then present a set of initial experiments which

validate our approach and allow us to select the correct pa-

rameters for our BinBoost descriptor. Finally, we compare

BinBoost with the state-of-the-art binary and floating point

descriptors.

4.1. Evaluation framework

We evaluate the performance of our methods using

three publicly available datasets: Liberty, Notre Dame, and

Yosemite [3]. Each of them contains over 400k scale- and

rotation-normalized 64 × 64 patches. These patches are

sampled around interest points detected using Difference

of Gaussians and the correspondences between patches are

found using a multi-view stereo algorithm. The result-

ing datasets exhibit substantial perspective distortion and

changing lighting conditions. The ground truth available

for each of these datasets describes 100k, 200k and 500k
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Figure 2. Influence of (a) the number of orientation bins q and (b) the number of weak learners K on the descriptor performance for

dimensionalities D = 8, 16, 32, 64 bits. The performances are optimal with q = 8 orientation bins, which is also the number used in

SIFT. Increasing the number of weak learners K from K = 128 to K = 256 provides only a minor improvement—at greatly increased

computational cost—and, hence, we choose for our final descriptor K = 128.

pairs of patches, where 50% correspond to match pairs, and

50% to non-match pairs. In our experiments, we use sub-

sampled patches of size 32 × 32 and the descriptors are

trained on each of the 200k datasets and we use the held-

out 100k dataset for testing. We report the results of the

evaluation in terms of ROC curves and 95% error rate as

in [3].

4.2. Initial experiments

Our boosting framework defines a generic optimization

strategy that unlike many previous approaches, such as [3],

does not require the fine tuning of multiple parameters. Bin-

Boost has only three main parameters that provide a clear

trade-off between the performance and complexity of the fi-

nal descriptor: the number of orientation bins used by the

weak learner, the number of weak learners, and the final

dimensionality of the descriptor. We study below the influ-

ence of each of them on the performance of our descriptor.

Number of orientation bins q defines the granularity of

the gradient-based weak learners. Fig. 2(a) shows the re-

sults obtained for different values of q and D. For most of

the values for D, the performances are optimal for q = 8
as finer orientation quantization does not lead to any perfor-

mance improvement and we keep q = 8 in the remaining

experiments. Interestingly, this is also the number of orien-

tation bins used in SIFT.

Number of weak learners K determines how many

gradient-based features are evaluated per dimension and in

Fig. 2(b) we show the 95% error rates for different values

of K. Increasing the value of K results in increased com-

putational cost and since the performances seem to saturate

after K = 128, we keep this value for our final descriptor.

Dimensionality D is the number of bits of our final de-

scriptor. Fig. 3 shows that with D = 64 bits, our descriptor
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Figure 3. Performances for different dimensionalities D. With

D = 64 bits, BinBoost reaches its optimal performance as in-

creasing the dimensionality further does not seem to improve the

results. In bold red we mark the dimensionality for which Bin-

Boost outperforms SIFT, which is always less or equal to 8.

reaches its optimal performance as increasing the dimen-

sionality further does not seem to improve the results.

Using the above-mentioned parameters for our compact

BinBoost descriptor, we trained it using the Notre Dame

dataset. To visualize the weighting and pooling scheme

found with our approach, we show in Fig. 4 the weak learn-

ers and their weighted orientations chosen for computing

the first 8 bits. The weak learners of similar orientations

tend to cluster about different regions for each bit thus illus-

trating the complementary nature of the learned hash func-

tions.

4.3. Comparison with the state of the art

In this section we compare our approach against

SIFT [17], SURF [2], the binary LDAHash descriptor [27],



Figure 4. Visualization of the selected weak learners for the first 8

bits learned on 200k pairs of 32×32 patches from the Notre Dame

dataset (best viewed on screen). For each pixel of the figure we

show the average orientation weighted by the weights of the weak

learners bd. For different bits, the weak learners cluster about

different regions and orientations illustrating their complementary

nature.

the binary BGM descriptor [29], Boosted SSC [25], L-

BGM [29], the binary ITQ descriptor applied on SIFT de-

scriptors [9], and the fast binary BRIEF [4] and BRISK [15]

descriptors. Like our approach, Boosted SSC, BGM, and L-

BGM are based on boosting. ITQ is based on rotations ap-

plied to an intermediate representation such as SIFT. BRIEF

and BRISK are computed from simple image intensity com-

parisons.

For SIFT, we use the publicly available implementation

of A. Vedaldi [31]. For SURF, LDAHash, BRIEF, BRISK,

ITQ, BGM and L-BGM we use the implementation avail-

able from their authors. For the other methods, we use our

own implementation or we report the results from the lit-

erature. For Boosted SSC, we use 128 dimensions as this

obtained the best performance.

Fig. 7 shows the ROC curves for BinBoost and the state-

of-the-art methods. Table 1 summarizes the 95% error

rates. Both show that BinBoost significantly outperforms

the baselines. It performs almost twice as well as SIFT

in terms of 95% error rate, while requiring only 64 bits

(8 bytes) instead of 128 bytes for SIFT. Moreover, since

BinBoost can be efficiently implemented using integral im-

ages, the computation time of our descriptor is compara-

ble with that of SIFT using Vedaldi’s implementation—

approximately 1ms per descriptor on a Macbook Pro with

an Intel i7 2.66 GHz CPU. The performance improvement

of BinBoost with respect to the recent binary descriptors,

such as LDAHash or BRIEF, is even greater, BinBoost

achieving a 95% error rate that is almost a factor of 3 lower

than that obtained with these methods. More results are pre-

sented in the supplementary material.

Since the dimensionality of the other binary descriptors

can be varied depending on the required performance qual-

ity, Fig. 5 compares the 95% error rates of these descriptors

for different numbers of bits used. BinBoost clearly outper-

forms them across all dimensions at the lower end of the

spectrum. However, the biggest improvement can be seen
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ing times. The reported times were computed for 100k pairs

from a test dataset (i.e. 100k distance computations were per-

formed) on a Macbook Pro with an Intel i7 2.66 GHz CPU (with

the POPCOUNT instruction enabled) and averaged over 100 runs.

To make the comparison fair, we optimized the matching strategy

for floating-point descriptors by representing them with unsigned

characters. The advantage of binary descriptors, out of which Bin-

Boost performs the best in terms of 95% error rate, is clear.

for lower dimensionality. In fact, with as few as 16 bits Bin-

Boost performs as well as the next best descriptor, BGM,

which is 128 bits long.

Moreover, our BinBoost descriptor remains competitive

to the best descriptors of [3] and [26], even though the mem-

ory footprint of their descriptors is almost 4 times greater.

The real advantage of BinBoost, however, is its binary na-

ture which allows for extremely fast similarity computa-

tion using the Hamming distance2, whereas the descriptors

of [3] and [26] are floating-point and cannot benefit from

the same optimization, even when quantized very coarsely.

2On modern CPUs this can be implemented as a bitwise XOR operation

on the descriptors followed by a POPCOUNT instruction which counts the

number of bits set to 1.
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Figure 7. Comparison of our BinBoost descriptor to the state-of-the-art binary (left) and floating-point (right) descriptors. In parentheses:

the number of floating-point (f) or binary (b) dimensions and the 95% error rate. Our BinBoost descriptor significantly outperforms its

binary competitors for all false positive rates. It also outperforms SIFT and provides similar performances to the recent floating-point

descriptors, even though it is much faster to match and has a lower memory footprint. More results are shown in the supplementary

material.
Binary Floating-point

Train Test
BinBoost BGM [29] ITQ-SIFT [9] LDAHash [27] BRIEF BRISK SURF SIFT L-BGM [29] Brown [3] Simonyan [26]

8 bytes 8 bytes 8 bytes 16 bytes 32 bytes 64 bytes 64 bytes 128 bytes 64 bytes 29 bytes 29 bytes

Yosemite
Notre Dame

14.54 26.80 30.56
51.58 54.57 74.88 45.51 28.09

13.73 11.98 9.67

Liberty 16.90 29.60 31.07 14.15 - -

Yosemite
Liberty

21.67 33.54 37.31
49.66 59.15 79.36 54.01 36.27

21.03 18.27 17.44

Notre Dame 20.49 31.90 36.95 18.05 16.85 14.51

Notre Dame
Yosemite

18.97 30.58 34.34
52.95 54.96 73.21 43.58 29.15

15.86 13.55 12.54

Liberty 22.88 38.13 34.43 19.63 - -

Table 1. 95% error rates for different training and testing configurations and the corresponding results for BinBoost with 64 and 8 bits and

its competitors. For the descriptors that do not depend on the training data, we write one result per testing dataset, for others we give the

results for two different training datasets. Below the descriptor names we write the number of bytes used to encode them. For the floating

point descriptors (SIFT, SURF, L-BGM [29], Brown et al. [3], Simonyan et al. [26]) we assume 1 byte per dimension, as this quantization

was reported as sufficient for SIFT [31]. BinBoost significantly outperforms its binary competitors, while requiring less memory. For

reference, we also give the results of the floating-point descriptors: BinBoost performs similarly to the best floating-point descriptors even

though it is shorter and binary which enables a significant speedup in processing time (See Fig. 6).

As presented in Fig. 6, this results in a speedup of over 2

orders of magnitude in terms of similarity search.

To verify the performance of our descriptor, we also

compare it to several binarization techniques applied on

the recently proposed floating-point L-BGM descriptor that

outperforms SIFT on the Liberty, Notre Dame and Yosemite

datasets. Results are displayed in Fig. 8. Binarizing the

L-BGM coordinates by thresholding them at an optimal

threshold found as in [27] results in large binarization er-

rors significantly decreasing the accuracy of the resulting

binary representation. This error can be reduced using It-

erative Quantization [9], however, the orthogonality con-

straints used in this approach largely limit the extent to

which it can be minimized. In contrast, sequential projec-

tion learning (S3PLH) [34] can find non-orthogonal projec-

tions that more faithfully mitigate binarization error, how-

ever, it requires a fairly large number of bits to recover L-

BGM’s original performance. Unlike these methods, by

effectively combining multiple weak learners within each

hash function, our algorithm results in a more accurate pre-

dictor with far fewer bits.

5. Conclusion

In this paper we presented an efficient framework to

train highly discriminative binary local feature descriptors.

Leveraging the boosting-trick, we simultaneously optimize

both the descriptor weighting and pooling strategy. The

proposed sequential learning scheme finds a single boosted

hash function per dimension as a linear combination of non-

linear gradient-based weak learners. Since we train our de-

scriptor from intensity patches, our final binary descriptor

does not rely on any pre-computed representation, and it

outperforms the state of the art with only 64 bits per descrip-

tor. The generalization of our approach to different evalua-

tion conditions and application domains, including medical

and underwater imaging, are important problems that we

plan to address as part of future research.
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