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Abstract. Binary descriptors of image patches are increasingly pop-
ular given that they require less storage and enable faster processing.
This, however, comes at a price of lower recognition performances. To
boost these performances, we project the image patches to a more dis-
criminative subspace, and threshold their coordinates to build our binary
descriptor. However, applying complex projections to the patches is slow,
which negates some of the advantages of binary descriptors. Hence, our
key idea is to learn the discriminative projections so that they can be
decomposed into a small number of simple filters for which the responses
can be computed fast. We show that with as few as 32 bits per descriptor
we outperform the state-of-the-art binary descriptors in terms of both
accuracy and efficiency.

1 Introduction

Local image feature descriptors have been vastly used in many computer vision
applications such as image retrieval, pose estimation and 3D reconstruction.
Their main goal is to represent a salient image region while remaining invariant
to various illumination and viewpoint changes. In practice, however, obtaining
such a robust representation becomes a challenging task, especially for mobile
devices with limited resources.

Numerous methods have been proposed in the literature to tackle this prob-
lem [1,2], but very recently, several binary descriptors computed directly on
image patches—BRIEF [3], ORB [4], and BRISK [5]—have appeared. They are
both fast to compute and to match, with a very small memory footprint, and
their quick success clearly shows a need for such descriptors in real applications,
especially for low-end handheld devices.

However, these new descriptors tend to be less robust than slower approaches.
In this work, we aim to bridge this performance gap without increasing the com-
putational cost. In order to boost the recognition performances, we adopt a
discriminative approach as in [6-8]: We use training data to learn linear projec-
tions that map image patches to a more discriminative subspace, and to obtain
a binary descriptor, we threshold the projected patches. This way we avoid
the intermediate step of computing complex floating-point descriptors, which is
common for many binary descriptors [7,9] but exceeds the capabilities of many
mobile platforms.
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Fig. 1. To compute our binary descriptor, we learn from a training set of corresponding
image patches several discriminative linear projections that can be computed from a
linear combination of a few simple filters. For the example of this figure, we used
rectangular filters that can be computed efficiently with integral images, but we also
consider box and Gaussian filters which are also efficient to compute. This approach
enables us to build our binary descriptor fast while leveraging on training data.

Nevertheless, projecting image patches is computationally expensive and
negates the efficiency of binary descriptors, especially when they have to be com-
puted in real time. Thus, in our approach, and this is our main contribution, we
train the projections not only to be discriminative but also to be computed as a
linear combination of a small number of simple filters from a given dictionary, as
shown in Fig. 1. We design the dictionaries in such a way that the filter responses
can be computed fast, with box or Gaussian filtering or using integral images.
Our key idea is that this can be done by imposing sparsity constraints and using
efficient optimization techniques.

To summarize, we build our binary descriptor, which we refer to as D-Brief
for Discriminative BRIEF!, by first projecting image patches to a more discrim-
inant subspace and then concatenating the results of a thresholding operation
applied on the projected coordinates. When we use box or Gaussian filters to
construct the projections, we can speed up the computation of projected patches
by first convolving the entire image with a given filter and then combining only
a few values read from the convolved image. With rectangular filters, we use
integral images to compute the responses fast. As a result, D-Brief provides
better recognition performances than its direct competitors [3-5], while being
significantly shorter—only 32 bits to be compared with several hundreds—and
less time consuming. D-Brief can also be seen as a much more efficient binary
alternative to the short floating-point descriptors of [6], which require more time
to be computed, and hence target different applications than binary descriptors.

The rest of this paper is organized as follows. In Section 2, we discuss the
related work. In Section 3, we introduce our method to construct a binary de-
scriptor from a set of discriminant projections learnt from a training dataset.
We explain in details how we optimize on the projections so that they can
be computed using small number of simple filter banks which enables efficient
computation of projected patches. Finally, we compare the performances of our
D-Brief binary descriptor with the state of the art and we show an example of
a real-time application based on D-Brief.

! The reference implementation of D-Brief will be made publicly available.
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2 Related Work

Due to the increasing interest of the research community in real-time applications
and the implementation of Computer Vision algorithms on mobile devices, many
efficient feature descriptors have been proposed in the literature.

The widely used SURF descriptor [2] is created by summing responses of
Haar wavelets, which can be done very fast using integral images. We also rely
on integral images for one of our dictionaries of filters, but to speed up the
computation of learnt discriminative projections, not to compute handcrafted
filters. Our descriptor is also significantly shorter and faster to compute.

Few recent methods propose to construct efficient low bit-rate descriptors us-
ing compression or quantization techniques [10, 11]. These approaches, however,
were mainly designed for visual search, which is an application of much lower
speed requirements than our descriptor aims at. Thus, even though the result-
ing descriptors are compact, they require complex image gradient computations
which often remain prohibitive for mobile devices.

Much research has been recently focused on designing binary descriptors,
since they require much less storage than the real-valued ones. They also enable
faster matching as there are efficient indexing schemes for binary vectors [12,
13] and Hamming distances can be computed fast on many architectures, in-
cluding mobile devices. Thanks to all these properties, binary descriptors are
perfect candidates for real-time applications. Both unsupervised and supervised
approaches have been proposed. Unsupervised approaches seek for a transfor-
mation that preserves the similarity as evaluated in the original space, typically
using the Euclidean distance [13-15]. Our method belongs to the category of
supervised approaches: These approaches aim to outperform unsupervised ones
by exploiting labeled data to produce similar binary representations for data
with the same class labels [7,9,16,17].

Our work is closely related to LDAHash [7], which also computes a binary
descriptor using discriminative projections but applied to SIFT descriptors in-
stead of image patches. Linear Discriminative Analysis was also applied to image
patches and other descriptors in [6]. However, the descriptors in [6] are not bi-
nary and much more time-consuming to compute and match than ours. Our
main contribution, on the other hand, is to show that the linear projections can
be optimized for very fast computation using recent optimization theory, and is
therefore not limited to LDA.

Most of the binarization methods mentioned above are applied to a sophis-
ticated descriptor, such as SIFT or Gist, and thus exceed the capabilities of
modern mobile devices. To address this problem, we consider here simple inten-
sity image patches. This is motivated by very recent binary feature descriptors [3,
5,4], which are computed by applying simple tests directly to the image. These
tests compare the image intensities at two pixel locations. For noise removal,
the image is pre-smoothed with a box filter or a Gaussian filter. BRIEF [3] uses
random pre-determined locations, whereas BRISK [5] uses an exhaustive set of
comparisons of close locations. ORB [4] relies on optimization like we do and
aims at improving the recognition rates by choosing the locations that decorre-
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late the tests. However, the approach in ORB is limited to a very specific type of
tests and relies on a greedy optimization, while we can deal with tests of general
form and incorporate the computational cost as a penalty in our cost function.
Finally, our formulation encompasses the computation of these descriptors, as
they are built by computing a linear combination of two box or Gaussian filter
responses and thresholding the resulting values at zero.

3 Learning Framework

Our binary descriptor is computed by applying a set of projections to a real-
valued vector made of the intensities of an image patch and then thresholding
the results:

Vie1,.Nn bi= Sign(w;rx +7i), (1)

where the b; are the N bits of our descriptor, the w; the projections, the 7; the
thresholds, and x the image patch in vector form. We show in Section 3.1 how to
optimize over the {w;, 7;} to obtain our efficient and discriminative descriptor,
and in Section 3.2 we explain how it can be computed fast. Finally, we evaluate
how our descriptor is influenced by its parameters in Section 3.3.

3.1 Approach

In principal, our approach seeks to minimize the expected Hamming distance
between binary descriptors that describe similar keypoints while maximizing it
for the descriptors that describe different keypoints. To that end, we learn a set
of discriminative orthogonal linear projections and the corresponding thresholds
from a set P of pairs of corresponding image patches and another set A/ of pairs
of different patches. Nevertheless, applying general projections directly on the
image patches is computationally expensive. Hence, our key idea is to train the
projections w; to be a linear combination of a few elements from a predefined set
or dictionary D, which is designed to contain elements for which the responses
can be computed fast, for example using box filters.

More formally, we express the projections as w; = Ds;, where the dictionary
D is defined as a matrix with its columns being the elements of the dictionary.
We want most of the coefficients of the s; vectors to be equal to zero, that is,
the s; should be sparse. Our goal can then be formalized as solving the following
minimization problem:

Z Z sign((Ds;) 'x + 7;) sign((Ds;) "x' + 7;) —
i€l,...,.N (x,x’)EN
Z sign((Ds;) "x 4 7;) sign((Ds;) %' 4+ 73) 4+ Alsil1
(x,x")eP
subject to  (Ds;) " (Ds;) = 8ij , (2)

min
{(si,m)}

where the last term encourages sparsity of the s; with A determining its sparsity
level, and |.|; denotes the ¢; norm. The constraint, with 6;; = 1if ¢ = j and 0
otherwise, makes sure that the projections are orthogonal.

Unfortunately, direct minimization of this objective function is difficult as it
involves the non-differentiable sign function. In our case, typical solutions of this
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problem, such as smooth approximation with the hinge function [18], would lead
to a quadratic non-convex problem which is challenging to solve, as it involves
thousands of unknowns.

Thus, we drop the sign function and minimize the related objective function
as it is done in [7]:

min Sixxner (D) (e —x))?
e XZ: Z(x,x’)e_/\[ ((Dsi)T(X—X/))Z +>‘| 1,|1 (3)

subject to  (Ds;) " (Ds;) = d;;

The above objective is independent of the thresholds 7;. Hence, after finding the
projections w; = Ds;, the optimal thresholds are obtained by minimizing the
original objective of Eq. (2) using the training sets P and A. With the projec-
tions w; being fixed, this requires simple one-dimensional search, as explained
in [7].

A possible method to solve the minimization problem of Eq. (3) is by using
Stochastic Gradient Descent, with soft-thresholding as the proximal operator
of the ¢; norm [19]. However, even after dropping the sign function, Eq. (3) re-
mains non-convex and the optimization is likely to get stuck in a local minimum.
Therefore, it becomes essential to initialize the optimization properly, because
random initialization may not give satisfactory results, as we show below.

We propose to set the initialization point of the optimization using the fol-
lowing approach: We start by minimizing the first term of Eq. (3) and we obtain
an initial set of discriminant projections {w?} using Linear Discriminant Em-
bedding (LDE) [6]:

Z(x x')eP (wiT(X - X/))z
{w?} = argmin : .
{wi} ; Z(x,x’)GN (W;F(X_X/))2

(4)

As one can see, the LDE includes the orthogonality constraint from Eq. (3),
as the resulting projections are based on the orthogonal eigenvectors. We then
address the sparsity constraint of Eq. (3) and approximate each w9 projection
with a sparse linear combination of elements from dictionary D by minimizing
the following objective:

{50} = argmin [[w? — Ds |3 + Al (5)

Sq
where the first term corresponds to the quality of approximation, and the second
one to the sparsity of the filter representation. To simplify our optimization, we
do not constrain our approximated projections to be orthogonal, although this
could certainly lead to an interesting extension of our approach.

The advantage of the stepwise approach discussed above is that Eq. (4) can be
solved in closed-form as shown in [6], while Eq. (5) is convex and can be solved
with efficient recent techniques [19]. In practice, we use the MATLAB lasso
function which implements [20] and lets the user define [s|***, the maximal
number of non-zero coefficients in the representation, which is a more convenient
way of controlling the sparsity of the approximation compared to tuning A.
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To evaluate the quality of our approach, we performed the following experi-
ments. We took two sets of projections: Random ones {wE} and those obtained
using our stepwise approach {w® = Ds}. We then minimized Eq. (3) with
Stochastic Gradient Descent using first {wR} and then {w} as initializers. As
aresult we obtained two optimized sets of projections, {wir P} and {w5~°Pf}
respectively. To make the comparison fair, we set the number of projections to
32 and tuned the parameters so that each projection was a linear combination of
64 columns of D. We then found the corresponding optimal thresholds and eval-
uated the resulting descriptors on all the test sets, using the setup of Section 3.3.
We present here two representative ROC curves.

As Fig. 2 shows, optimizing over the random projections significantly im-
proves the results. Nevertheless, the projections obtained using the stepwise ini-
tialization scheme we propose perform better even without optimization. More-
over, our extensive evaluation shows that applying a global optimization on the
{W?} does not lead to any significant improvement and, hence, in the remainder
of this paper we use our stepwise approach without further optimizing it.

Train: Yosemite (200k) Test: Notre Dame (100k) Train: Notre Dame (200k) Test: Liberty (100k)
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Fig. 2. Results obtained using Stochastic Gradient Descent applied to Eq. (3) and
initialized with random projections or projections found with our stepwise approach.
We used 32 projections and tuned the parameters so that each projection is a lin-
ear combination of 64 columns of BOX dictionary. We then found the corresponding
optimal thresholds. Initializing gradient descent with the stepwise approach instead
of random projections boosts the results significantly. Interestingly, optimization im-
proves the quality of the projections only slightly while requiring additional processing
time. Thus, to build D-Brief we use projections computed with the stepwise approach
without further optimization.

3.2 Dictionaries

After finding a set of projections {w; = Ds;}, they can be applied on an image
patch x as:
w;x=(Ds;) x = Z sijD;rx , (6)
j such that s;;#0
where the D; are the columns of matrix D and contain the dictionary elements.

The dictionary in D is designed so that the dot product D;'—x can be computed
efficiently. In our experiments we use three different dictionaries that contain:
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a) Box filters (BOX): To create this dictionary we generate a set of box filters
of size 5 x 5 that are centered at each coordinate of the image patch. Since
our subsampled patches are of size 32 x 32, there are 1,024 elements in this
dictionary.

b) Gaussian filters (GAUSS): Similarly, we generate a set of Gaussian filters
with ¢ = 3 centered at each coordinate of the image patch. The size of this
dictionary is also 1,024.

¢) Rectangular filters (RECT): We create this dictionary by generating a set
of rectangular filters of different sizes centered at each coordinate. We sub-
sample the space of all possible rectangular filters by considering those whose
horizontal or vertical edge is equal to 1,4, 7,10, .... The resulting dictionary
size is 34,596.

At run-time, to compute the D;'—x values, we first convolve the image patch
with a box filter or a Gaussian filter, or compute the integral image for the patch.
All these operations can be done very efficiently. Then, the D]Tx can be obtained
by reading a single value in the result of the convolution, or four values in the
integral image in the case of the RECT dictionary.

Train: Notre Dame (200k) Test: Yosemite (100k)
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Fig. 3. (a) Some images patches from the Liberty dataset [6] used to train the dis-
criminative projections. (b) 95% error rates for different numbers of LDE projections
obtained from Eq. (4) and used for dimensionality reduction before and after apply-
ing the thresholds (the 95% error rate is the percent of incorrect matches obtained
when 95% of the true matches are found). Without binarization, the error rates do
not change significantly for different dimensionalities. After binarization, however, the
dimensionality has much greater influence, likely because the projections are ranked by
decreasing discriminative power, while the binarization gives them equal importance.
The minimum of the plotted curve corresponding to the best performance is obtained
for 32 dimensions.

45

3.3 Experiments

To train our projections, we use three publicly available dataset: Liberty, Notre
Dame and Yosemite [6]. Each of them contains over 400k scale- and rotation-
normalized 64 x 64 patches. These patches are sampled around interest points
detected using Difference of Gaussians and the correspondences between patches
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are found using a multi-view stereo algorithm. The datasets created this way ex-
hibit substantial perspective distortion and various lighting conditions. Sample
patches from the Liberty dataset are shown in Fig. 3(a). The ground truth avail-
able for each of those datasets describes 100k, 200k and 500k pairs of patches,
where 50% correspond to match pairs, and 50% to non-match pairs. To avoid
overfitting when training the LDE projections we apply a regularization method
proposed in [6] with clipping parameter o = 0.01. We tried different combina-
tions of training and testing datasets, but as in [6], we found that choosing a
specific combination does not have a strong influence on the final results.

As shown in Fig. 3(b) the best performances are obtained when using the first
32 projections. When a larger number of projections is used, the performances
start deteriorating. This performance peak can be explained by the fact that
the binarization step gives equal importance to all the projections, while the
projections computed with LDE are ranked by decreasing discriminative power.
Moreover, using the least ranked projections, which correspond to the dimensions
of lower energy, introduces classification noise and deteriorates performance. We
therefore keep the top 32 projections in the rest of the paper, and our descriptor
is made of 32 bits.

We performed a set of experiments to qualitatively and quantitatively assess
the influence of different parameters on Eq. (5). Fig. 4 shows how the dictionary
type and the number of elements used influences the results on two sample LDE
projections.
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Fig. 4. Projections obtained by optimizing Eq. (5), from two LDE projections obtained
with Eq. (4). We varied the dictionaries and the maximal numbers of dictionary ele-
ments per projection. The columns on the right show the first 8 elements of the sparse
representation s which are best viewed on a monitor.
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Fig. 5 shows the recognition rates for projections obtained by optimizing
Eq. (5), from the top 32 LDE projections obtained with Eq. (4) with different
dictionaries and various numbers of dictionary elements used. Before binariza-
tion, the RECT dictionary provides the best results, followed by the GAUSS
and BOX dictionaries. While optimizing the projections with Eq. (5) hurts the
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recognition performances before binarization, it is not true anymore after bina-
rization. There is actually a minor improvement, which may come from the fact
that the LDE projections are typically noisy and the optimization introduces
some regularization which makes the thresholds generalize better. Surprisingly,
the GAUSS dictionary performs better than the others after binarization for
small numbers of elements, but then gets outperformed again by the RECT
dictionary for large numbers of elements.

Train: Notre Dame (200K) Test: Liberty(100k) Train: Notre Dame (200K) Test: Liberty(100k)
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Fig. 5. Performances of the projections obtained by optimizing Eq. (5), from the top
32 LDE projections obtained with Eq. (4). We varied the dictionaries and the maximal
numbers of dictionary elements per projection. We also give the results for the projec-
tions directly obtained with Eq. (4), referred to as LDE. In parentheses: Number of
floating point (f) or binary (b) coordinates, and number of elements. Before binariza-
tion, the RECT dictionary provides the best approximation, followed by the GAUSS
and BOX dictionary. While the approximation hurts the recognition performances be-
fore binarization, it is not true anymore after binarization. The minor improvement
can be explained by the smoothing effect of the approximation applied on typically
noisy LDE projections which makes the thresholds generalize better.

As explained in Section 3.1, to build the descriptors efficiently at run-time we
first preprocess the image patch either by convolving it with a box or Gaussian
filter or by computing the integral image. Then, the D;rx values of Eq. (6) are
obtained by reading either one or four values from the output of this prepro-
cessing stage. Convolution with a box filter is faster than convolution with a
Gaussian filter, and when using the RECT dictionary, we need to read four val-
ues for each D]Tx instead of only one as with the BOX and GAUSS dictionaries.
The computation times are therefore different for each dictionary and Table 2
presents the times required for computing our descriptors using different dictio-
naries. With our approach, we can speed up the description time with respect
to regular projections by over an order of magnitude.

Moreover, there is a trade-off between the accuracy and efficiency of the
dictionaries: The slower one yields the best recognition performance, and wvice
versa. In practice, this means that we can adapt our method to the need of the
final application.

In the remainder of this paper, we use projections learnt on the Notre Dame
dataset, unless stated otherwise, and the RECT dictionary with 64 elements to
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approximate the projections, since its performance is superior while the process-
ing time still enables real-time applications, as shown in the next section.

As reported in [6], pre-normalizing the patches by subtracting the intensity
mean value and dividing by the standard deviation and post-normalizing the
descriptor to unit length improves the performance, in case of a real-valued
descriptor. Inspired by these findings, we tried normalizing our patches and
descriptors as in [6]. Fig. 6 confirms the observed performance improvement
for real-valued coordinates. However, these steps do not have much influence
on the results after binarization. This is because we train the thresholds to
be discriminative after applying the projections and, hence, they adapt well to
the light variations. Hence, we skip the normalization, as it entails additional
computational overhead.

Train: Yosemite (200k) Test: Notre Dame (100k) Train: Yosemite (200k) Test: Liberty (100k)
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Fig. 6. Influence of normalization applied on the D-Brief descriptors before (left) and
after (right) binarization. In parentheses: Number of floating point (f) or binary (b)
coordinates. Normalization improves the performance only for the real-valued coor-
dinates. The thresholds applied in the binarization step adapt to the discriminative
subspace and, we can hence skip the normalization steps with no loss of accuracy.

4 Results

In this section, we first compare the performance of our approach to other de-
scriptors including recent binary descriptors. We then confirm the generalization
of our approach by providing an example of a real-time object detection appli-
cation based on the compact binary descriptor we learnt.
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4.1 Descriptor Comparison

We compare here the performance of our D-Brief descriptor against the state-of-
the-art descriptors on the Yosemite, Notre Dame, and Liberty datasets from [6]
and report the results in terms of ROC curves and 95% error rate as in [6]. We
focus on fast binary descriptors, and consider the very recent BRIEF, BRISK,
and ORB as they are the direct competitors to our approach. For reference,
we also provide results obtained with SIFT, SURF, and a real-valued descriptor
computed by applying LDE projections on bias-gain normalized patches. For this
descriptor, which we refer to as LDE, we use the optimal number of projections
found in [6]. We compute BRIEF and ORB using OpenCV implementations. For
SIFT, we use the publicly available implementation of A. Vedaldi?. For BRISK

2 wuw.vlfeat.org/~vedaldi/code/siftpp.html
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and SURF, we use the implementations available on the websites of the authors,
and for LDE, our own implementation. All the experiments were performed on
a Macbook Pro with an Intel i7 2.66 GHz CPU.

Table 1 clearly shows that D-Brief provides up to 32% improvement over
BRISK and up to 11% improvement over BRIEF in terms of 95% error rate,
while requiring only 4 bytes instead of 64 for BRISK and 32 for BRIEF. It
also shows that D-Brief remains competitive to the much longer and much more
computationally expensive floating-point SURF.

Table 1. 95% error rates for different training and testing configurations and the cor-
responding results for BRIEF, BRISK and SURF (the results for ORB were identical
to those of BRIEF, despite the fact that ORB optimizes its tests). As a baseline, we
give the results for SIFT which is over 3 orders of magnitude slower to compute than
our descriptor. For each configuration, we learnt the first 32 projections, approximated
them using a dictionary of rectangular filters and learnt the thresholds. Below the de-
scriptor names we write the number of bytes used to encode them. D-Brief outperforms
its binary competitors, while requiring significantly less memory.

D-Brief| BRIEF|ORB| BRISK | SURF SIFT
4 bytes| 32 bytes |64 bytes|64 bytes||128 bytes

Yosemite |Notre Dame|| 43.96 54.57 74.88 | 45.51 28.09

Train Test

Yosemite Liberty 53.39 59.15 79.36 | 54.01 36.26
Notre Dame| Yosemite 46.22 54.96 73.21 | 43.57 29.14
Notre Dame| Liberty 51.30 59.15 79.36 | 54.01 36.26

Liberty |Notre Dame|| 43.10 54.57 74.88 | 45.51 28.09
Liberty Yosemite 47.29 54.96 73.21 | 43.57 29.14

Table 2 shows that the performance improvement of D-Brief is not reached
at the price of a loss of its efficiency. We extracted 3000 feature points using the
SURF detector from the 1000x700 walll.ppm image from Mikolajczyk dataset,
and averaged the timings to compute the SURF, BRISK, BRIEF, LDE and
D-Brief descriptors over 300 runs. Since both BRIEF and ORB are built using
the same number of intensity comparisons, their timings are equal by definition.
Our descriptor is 2-3 times faster to compute than BRISK and slightly faster
than BRIEF when the BOX or GAUSS dictionaries are used. Also, its compact
representation makes it much faster to match.

Table 2 also recalls the advantages of binary descriptors directly computed
from the image. The description times for BRIEF and for D-Brief are over two
orders of magnitude shorter than for SURF and LDE. The matching time for
D-Brief is also much shorter than for SURF and LDE thanks to its binary nature.

Overall, we can build and match our descriptor over three times faster than
BRIEF (when working on a CPU on which the POPCOUNT instruction is not avail-
able?) and almost two times faster when the POPCOUNT instruction is enabled.

3 The POPCOUNT instruction computes the number of bits set to 1, and can be used
after a bitwise XOR operation to compute the Hamming distance very efficiently.
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Table 2. Description and matching timings per descriptor for SURF, LDE, BRISK,
BRIEF, ORB and D-Brief with different dictionaries (BOX, GAUSS and RECT) and
64 elements to approximate the projections. Results computed for 3000 descriptors
extracted from the walll.ppm image of Mikolajczyk dataset and averaged over 300
runs. For SIFT, we use its detector, for the other descriptors we use the one of SURF.
Exhaustive matching is performed. The subscripts of the descriptor names indicate
its number of binary or floating-point coordinates. With D-Brief we can speed up the
description and matching time by over an order of magnitude w.r.t. SURF and [6] and
over three times w.r.t. BRIEF and ORB (without the POPCOUNT instruction).

Description|Matching| Total
[115] [115] (5]

SIFT 285 2115.487 | 392.088 [2507.575
SURFeay 143.701 201.996 | 345.697

LDE [6]14f 113.149 57.649 | 170.798

without POPCOUNT:

BRISK512p 13.245 186.671 | 199.916
BRIEF|ORB2ses 3.736 99.125 | 102.861
No approz.| 80.694 107.204

. BOX 3.007 29.517
D-Briefszs A ygg 3.200 26510} 59 710
RECT 7.470 33.980

with POPCOUNT:

BRISKs5126 13.245 15.770 | 29.015
BRIEF|ORB2s6s 3.736 7.045 10.781
No approx.| 80.694 83.774

. BOX 3.007 6.087
D-Briefs2s ;A uss 3.200 3.080 16 950
RECT 7.470 10.55

Moreover, while we could not test it on mobile devices, it is reasonable to ex-
pect that D-Brief presents a few more advantages on such platforms. The ARM
processors, which they typically use, are 32-bit processors, and since our descrip-
tor is made of 32 bits, it fits into a single register. This is very advantageous as
many operations could be performed in one cycle.

Finally, Fig. 7 provides the ROC curves for two combinations of training and
test sets. D-Brief performs better than its binary competitors at all error rates.
D-Brief remains competitive to SURF, especially for the higher false positive
rates, even though it has a much shorter representation. The results of D-Brief
are comparable to those obtained with LDE. However, our descriptor is binary
which enables further speed-up when computing the similarities, and can be
computed much faster, as shown above. SIFT performs the best of all tested
descriptors, though its complexity is prohibitive for real-time application. BRISK
performs better than ORB and BRIEF at low True Positive rates and joins our
descriptor at such rates, but it is much longer.

4.2 Real-time Application

To demonstrate the real-time performance of D-Brief we implemented a simple
real-time application for planar object detection. The user can select the object
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Fig. 7. Recognition rates for the floating point and binary descriptors for different
training and testing datasets. In parentheses: The number of floating point (f) or
binary (b) coordinates, and the 95% error rate. Our D-Brief descriptor outperforms
all the other binary descriptors based on the intensity tests, namely BRIEF, ORB,
and BRISK, while remaining competitive to SURF for higher false positive rates. It
is also much shorter than all the other descriptors. The results obtained with LDE [6]
applied to normalized patches are similar to those of D-Brief, but it is much more
computationally expensive to compute and match (see Table 2).

Fig. 8. Screenshots of the object detection application. The user first draws a rectangle
around the target. The invariance to large scale changes and rotation is obtained by
computing the feature point descriptors under different scales and orientations. This
is performed on-the-fly and detecting the target runs in real-time with 27 frames per
second.

of interest by drawing a rectangle around it in a reference view. The application
then extracts feature points using FAST [21] and builds a database of D-Brief
descriptors for these feature points in 18 rotated views at 3 scales, totaling up to
54 views. This is a simple way to make our descriptor invariant to scale and ro-
tation changes, and was used for BRIEF in [3]. Alternatively, one could estimate
the scale and orientation of the feature points, and compute the descriptors on
the rectified patches as was done in ORB for example.

At run-time, for each input image, the application simply extracts feature
points, computes their D-Brief descriptors, matches them against all the descrip-
tors of the database, and finally computes the homography between the reference
view and the input image using RANSAC. Some screenshots are shown in Fig. 8.
One shall note that the projection matrix and thresholds of D-Brief are learnt
on images from Notre Dame dataset, whose quality differs significantly from
the quality of webcam images. Despite of that, the matching results are very
consistent and the correct homography is easily found.
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Conclusion

We presented a new method to learn discriminative projections which can be
computed efficiently as a linear combination of a few simple filters from a given
dictionary. This approach enables us to learn a compact and discriminative bi-
nary descriptor we call D-Brief. With only 32 bits per descriptor, D-Brief outper-
forms its binary state-of-the-art competitors in terms of accuracy and efficiency,
while significantly reducing the memory footprint.
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