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Learning Image Descriptors with Boosting
Tomasz Trzcinski, Mario Christoudias, and Vincent Lepetit

Abstract—We propose a novel and general framework to learn compact but highly discriminative floating-point and binary local

feature descriptors. By leveraging the boosting-trick we first show how to efficiently train a compact floating-point descriptor that

is very robust to illumination and viewpoint changes. We then present the main contribution of this paper — a binary extension

of the framework that demonstrates the real advantage of our approach and allows us to compress the descriptor even further.

Each bit of the resulting binary descriptor, which we call BinBoost, is computed with a boosted binary hash function, and we show

how to efficiently optimize the hash functions so that they are complementary, which is key to compactness and robustness. As

we do not put any constraints on the weak learner configuration underlying each hash function, our general framework allows

us to optimize the sampling patterns of recently proposed hand-crafted descriptors and significantly improve their performance.

Moreover, our boosting scheme can easily adapt to new applications and generalize to other types of image data, such as faces,

while providing state-of-the-art results at a fraction of the matching time and memory footprint.

Index Terms—Learning feature descriptors, binary embedding, boosting.

✦

1 INTRODUCTION

R EPRESENTING salient image patches in a way that is

invariant to illumination and viewpoint changes re-

mains a significant challenge in Computer Vision, as it lies

at the core of many popular applications including visual

search, 3D reconstruction and panorama stitching. To model

the non-linear nature of these unwanted transformations,

well-known local feature descriptors, such as SIFT [1] or

SURF [2], typically apply a set of hand-crafted filters and

aggregate or pool their responses within pre-defined regions

of the image patch. The extent, location and shape of these

regions defines the pooling configuration of the descriptor

and recent work shows that optimizing this configuration

can result in fairly large performance improvements [3],

[4], [5], [6]. Although significant progress has been made,

these approaches, however, are either built on top of hand-

crafted representations [3], [5] or still require significant

parameter tuning, as in [4] that relies on a non-analytical

objective that is difficult to optimize.

Learning an invariant feature representation can be seen

as finding an appropriate similarity measure which remains

invariant to unwanted image transformations. Although

several learning methods have been proposed in the liter-

ature [3], [7], [8], they have largely focused on finding a

linear feature mapping in either the original input or a ker-

nelized feature space. As a result, modeling non-linearities

requires choosing an appropriate kernel function that maps

the input features to a high-dimensional feature space where

the transformations are assumed to be linear. However,
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selecting the right kernel, which is a crucial element of the

algorithm, is often non-intuitive and generally constitutes a

complex and challenging problem.

In this paper, we propose a novel supervised learning

framework that finds low-dimensional but highly discrim-

inative descriptors. With our approach, image patch ap-

pearance is modeled using local non-linear filters that are

selected with boosting. We build upon [3] that also relies

on boosting to compute a descriptor, and show how we

can use it as a way to efficiently select features, from

which we compute a compact representation. Analogous

to the kernel-trick, our approach can be seen as applying

a boosting-trick [9] to obtain a non-linear mapping of the

input to a high-dimensional feature space. Unlike kernel

methods, boosting allows for the definition of intuitive non-

linear feature mappings that can share a close connection

with existing, prevalent keypoint descriptors. Our learning

approach is not limited to any pre-defined sampling pattern

and provides a more general framework than previous

training-based methods [4], [6], [10]. It also scales linearly

with the number of training examples, making it more

amenable to large scale problems, and results in highly

accurate descriptor matching.

Nevertheless, as image databases grow in size, modern

solutions to local feature-based image indexing and match-

ing must not only be accurate but also highly efficient to

remain viable. Binary descriptors are of particular interest

as they require far less storage capacity and offer much

faster matching times than conventional floating-point de-

scriptors [11], [5], [12], [13], [10], [14], or even quantized

descriptors [4]. In addition, they can be used directly

in hash table techniques for efficient Nearest Neighbor

search [15], [16], and their similarity can be computed very

quickly on modern CPUs based on the Hamming distance.

However, as our experiments show, state-of-the-art binary

descriptors often perform worse than their floating-point

competitors: some are built on top of existing representa-
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tions such as SIFT or GIST by relying on training data [11],

[5], and are therefore limited by the performance of the

intermediate representation. Others start from raw image

intensity patches, but focus on computation speed and rely

on fast-to-compute image features [12], [10], [13], [14],

which limit their accuracy.

To address these shortcomings, we extend our learning

framework to the binary case and we train a highly dis-

criminative yet compact binary descriptor. This extension

demonstrates the real advantage of our approach as it en-

ables us to not only compress the descriptor, but also signif-

icantly decrease the processing cost and memory footprint.

For each dimension of the resulting binary representation,

we learn a hash function of the same form as an AdaBoost

strong classifier, that is the sign of a linear combination of

non-linear weak learners. The resulting binary descriptor,

which we refer to as BinBoost, significantly outperforms

its binary competitors and exhibits a similar accuracy to

state-of-the-art floating-point or quantized descriptors at a

fraction of the storage and matching cost. Furthermore it is

more complex to optimize, and we show how to efficiently

optimize our hash functions using boosting.

This paper extends our previous work [17], [18] in

the following way. First, we show in Section 3 that our

method provides a general descriptor learning framework

that encompasses previously published approaches and the

state-of-the-art intensity-based [12], [10], [13], [14] and

gradient-based descriptors [1], [2], [5]. Our results show

that the ability to effectively optimize over the descriptor

filter configuration leads to a significant performance boost

at no additional computational cost compared with the

original hand-designed representation. We experiment with

additional weak learner families from the ones previously

used and we show that our learning method performs

well independently of the underlying weak learner type.

Finally, we provide an exhaustive experimental evaluation

of our methods on several challenging datasets, including

the Mikolajczyk dataset [19] and UKBench [20]. We also

illustrate how our method is not restricted to local feature

descriptors and can be successfully extended to new ap-

plication domains and other types of image data, and we

demonstrate this on a face recognition problem.

The rest of this paper is organized as follows. In Sec-

tion 2 we discuss related work. In Section 3 we describe our

method: we first show how to efficiently construct our set of

weak learners, from which we compute a compact floating-

point representation. We then explain how to extend this

approach to build a binary local feature descriptor. In

Section 4 we discuss different weak learner types and in

Section 5 we describe the experimental setup of our method

and its parameters. Section 6 presents the comparison of our

descriptors against the state-of-the-art methods. Finally, in

Section 7, we show how our framework can be used to

learn representations of other types of data, namely face

images.

2 RELATED WORK

Many recent techniques form binary descriptors based

on simple pixel intensity comparisons [12], [13], [10].

Huffman coding [21] and product quantization [22] have

also been explored to compress histogram of oriented

gradient descriptors. Similarly, [23] develops a binary edge

descriptor based on a histogram of normalized gradients.

Although more efficient, these hand-designed descriptors

are generally not compact and not as accurate as their

floating point equivalents.

For this reason, machine learning has been applied to

improve both the efficiency and accuracy of image descrip-

tor matching. Unsupervised hashing methods learn compact

binary descriptors whose Hamming distance is correlated

with the similarity in the original input space [11], [24],

[25], [26], [27]. Semantic hashing [25] trains a multi-

layer neural network to learn compact representative binary

codes. Spectral hashing [26] minimizes the expected Ham-

ming distance between similar training examples, and was

recently extended to optimize over example affinities [27].

Similarly, [24], [28] find codes whose Hamming distances

well approximate the original Euclidean ones. In [29], [11],

iterative and sequential optimization strategies that find

projections with minimal quantization error are explored.

While these approaches have proven highly effective for

finding compact binary codes, they rely on pre-defined

distance or similarity measures and in many cases are

limited to the accuracy of the original input space.

Supervised learning approaches can learn feature spaces

tailored to specific tasks [8], [30], [5], [29]. They exploit

labeled example pairs or triplets that encode the desired

proximity relationships of the learned metric. In [8], a

Mahalanobis distance metric is learned and optimized with

respect to labeled distance constraints. Linear Discriminant

Analysis is applied in [11], [5], [14] to learn discriminative

feature embeddings. Semi-supervised sequential learning

algorithms are proposed in [30], [29] for finding discrimina-

tive projections. Similar to these approaches, most methods

define a linear transformation of the data in either the

original or a kernelized feature space and rely on a pre-

specified kernel function to capture non-linearities. While

they are well-suited for image categorization and indexing

tasks for which task-specific kernels have been proposed,

such as in [31], they are less applicable to local descriptor

matching where the appropriate choice of kernel function

is less well understood.

Recent descriptor learning methods have emphasized the

importance of learning not only the optimal weighting,

but also the optimal shape or pooling configuration of the

underlying representation [4], [6]. In [4], they optimize

over different feature selection and pooling strategies of

gradient-based features, however, the criterion considered—

the area below the ROC—is not analytical making it

difficult to optimize. Following [4], a convex optimization

strategy was developed in [6]. To make learning tractable,

however, a limited set of pooling configurations was con-

sidered and restricted to circular, symmetrically arranged
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pooling regions centered about the patch. As shown in

our experiments, our binary descriptor achieves a similar

accuracy to these methods at a fraction of the matching

cost.

Jointly optimizing over descriptor weighting and shape

poses a difficult problem due to the potentially large num-

ber of pooling configurations one might encounter. This

is especially true for learning generic shapes where the

number of pooling regions can easily be in the millions,

even for small patch sizes. Fortunately, this is a problem

for which AdaBoost [32] and other boosting methods [33],

[34] are particularly well-suited. Although greedy, boosting

is an effective method for constructing a highly accu-

rate predictor from a large (potentially infinite) collection

of constituent parts. The resulting boosting-trick like the

kernel-trick, maps the input to a high-dimensional feature

space, however, the mapping it defines is explicit, with

the learned embedding assumed to be sparse [9], [35].

As a result and unlike kernel methods, boosting appears

to be an efficient way to find a non-linear transformation

of the input that is naturally parameterized over both the

descriptor shape and weighting.

In this paper, we introduce a family of boosted descrip-

tors that are trained with boosting for discriminative power

and compactness. Our work is inspired by Boosted Similar-

ity Sensitive Coding (SSC) [3] which is the first application

of boosting to learn an image similarity measure and was

later extended in [36] to be used with a Hamming distance.

Boosted SSC, however, only considers linear projections of

the input and generally results in fairly high dimensional

descriptions. Our methods, on the other hand, rely on more

complex weak learners and produce descriptors, both binary

and floating-point, of a much lower dimensionality.

We also propose a sequential learning method similar

to [29], [30] except, unlike these methods, our boosting

approach learns both the optimal shape and weighting of

the features associated with each bit. Our descriptor can

also be seen as a two layer neural network [25], since

each coordinate of the descriptor is computed from a

linear combination of pooled image features. As shown

in our experiments, this results in highly accurate and

compact descriptors whose final performance rivals that of

the leading binary and floating point descriptors.

3 METHOD

In this section we describe methods for learning local

feature descriptors with boosting. We first formulate our

problem by defining the exponential loss objective function

we use to learn a similarity embedding between image

patches. We then present different similarity measures

which, when plugged into our boosting framework, can be

used to train floating-point and binary descriptors.

3.1 Problem formulation

Given an image intensity patch x, we look for a descriptor

C(x) = [C1(x), . . . , CD(x)] which maps the patch to a

D-dimensional vector. This descriptor can be learned by

minimizing the exponential loss with respect to a desired

similarity function f (C(x), C(y)) = fC(x,y) defined

over image patch pairs:

L =

N∑

i=1

exp(−lifC(xi,yi)) (1)

where xi,yi ∈ Rp are training intensity patches and li ∈
{−1, 1} is a label indicating whether it is a similar (+1)
or dissimilar (−1) pair. Minimizing Equation (1) finds an

embedding which maximizes the similarity between pairs

of similar patches, while minimizing it for pairs of different

patches.

This formulation allows for numerous similarity func-

tions fC . We consider similarity functions of the form

fC(x,y) = C(x)T AC(y) (2)

where A ∈ RD×D is a symmetric matrix. This defines

a general class of symmetric similarity measures that can

be factorized to compute a feature descriptor independently

over each input and used to define a wide variety of image

descriptors. In what follows, we consider different choices

of A and C(·) ordering them in increasing complexity.

3.2 Boosted Similarity Sensitive Coding (SSC)

The Boosted SSC method proposed in [3] considers a

similarity function defined by a simply weighted sum of

thresholded response functions {hd(·)}Dd=1
:

fSSC(x,y) =

D∑

d=1

αdhd(x)hd(y) . (3)

This function is the weighted Hamming distance between x

and y and corresponds to Equation (2) where A is restricted

to be a diagonal matrix. The importance of each dimension

d given by the αd’s and the resulting D-dimensional de-

scriptor is a floating-point vector C(x) = [
√
αdhd(x)]

D
d=1

,

where α is constrained to be positive.

Substituting fSSC for fC in Equation (1) gives

LSSC =
N∑

i=1

exp

(
−li

D∑

d=1

αdhd(xi)hd(yi)

)
. (4)

In practice the space of h’s is prohibitively large, possibly

infinite, making the explicit optimization of LSSC difficult,

however, this constitutes a problem for which boosting

is particularly well suited [32]. Although boosting is a

greedy optimization scheme, it is an effective method for

constructing a highly accurate predictor from a collection

of weak predictors h. Due to its greedy nature, however,

the weak learners found using Boosted SSC often remain

highly redundant and hence inefficient. In what follows, we

modify the similarity function fC(x,y) so that it becomes

better suited for learning low-dimensional, discriminative

embeddings with boosting.
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3.3 FPBoost

To mitigate the potentially redundant embeddings found

by boosting we propose an alternative similarity measure

fFP that models the correlation between weak response

functions:

fFP (x,y) =
∑

k,k′

αk,k′hk(x)hk′(y) = h(x)TAh(y), (5)

where h(x) = [h1(x), · · · , hK(x)] and A is a K × K
matrix of coefficients αk,k′ . This similarity measure is

a generalization of Equation (3). In particular, fFP is

equivalent to the Boosted SSC similarity measure in the

restricted case of a diagonal A.

Substituting the above expression into Equation (1) gives

LFP =
N∑

i=1

exp


−li

∑

k,k′

αk,k′hk(xi)hk′(yi)


 . (6)

We optimize LFP using a two step learning strategy. We

first apply AdaBoost to find good weak learners {hk}Kk=1

by minimizing Equation (4) on the training samples as

in [3]. Then we apply stochastic gradient descent to find an

optimal weighting over the selected features that minimizes

Equation (6). To guarantee that the similarity function fFP

remains symmetric, we restrict the coefficients αk,k′ of A

to be symmetric. This optimization strategy is sub-optimal

but we found it to work well in practice.

The similarity function of Equation (5) defines an im-

plicit feature mapping over example pairs. In order to

compute the feature descriptors independently over each

input, we need to factorize A. As we constrain A to be

symmetric, we can factorize it into the following form:

A = BWBT =

K∑

k=1

wkbkb
T
k (7)

where W = diag([w1, · · · , wK ]), wk ∈ {−1, 1}, B =
[b1, · · · ,bk], b ∈ RK .

Equation (5) can then be re-expressed as

fFP (x,y) =
D∑

d=1

wd

(
K∑

k=1

bd,khk(x)

)(
K∑

k=1

bd,khk(y)

)
.

(8)

For D < K (i.e., the effective rank of A is D < K)

the factorization represents a smoothed version of A dis-

carding the low-energy dimensions that typically correlate

with noise, and in practice leading to further performance

improvements. The factorization of Equation (8) defines

a signed inner product between the embedded feature

vectors and provides increased efficiency with respect to the

original similarity measure1. Moreover, it is easy to show

that the signed inner product is equivalent to the Euclidean

distance under the assumption that the descriptors have

comparable magnitudes. As shown in Fig. 1, this is the

1Matching two sets of descriptors each of size N is O(N2
K

2) under
the original measure and O(NKD + N

2
D) provided the factorization,

resulting in significant savings for reasonably sized N and K, and D ≪

K.
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Fig. 1. Histogram of the L2 norms of 75k FPBoost

descriptors extracted from the images of Mikolajczyk

dataset [19]. The L2 norms are upper-bounded by√∑D

d=1
|bd|21 which equals 4 in this case. A signif-

icant portion of the descriptors have a comparable

magnitude and, hence, we can use Euclidean distance

in place of the equivalent inner product to measure

descriptor similarity.

case in practice and, hence, we can leverage the existing

methods for fast approximate nearest neighbor search which

rely on Euclidean distances.

The final embedding C(x) = BTh(x) results in a

D-dimensional floating-point descriptor based on K weak

learners that we call FPBoostK-D. The projection ma-

trix B defines a discriminative dimensionality reduction

optimized with respect to the exponential loss objective

of Equation (6). As seen in our experiments, in the case

of redundant weak learners this results in a considerable

feature compression, and therefore offering a more compact

description than the original input patch. Although compact

and highly discriminant, the descriptors learned using FP-

boost are real-valued and, hence, can be slow to match and

costly to store. Next, we consider a modification to FPboost

that as we show can be used to learn a highly accurate and

efficient binary descriptor.

3.4 BinBoost

To learn a binary descriptor we propose a modified sim-

ilarity measure that extends fFP to operate within a D-

dimensional Hamming space:

fB(x,y) =

D∑

d=1

sgn
(
bT
d hd(x)

)
sgn
(
bT
d hd(y)

)

=

D∑

d=1

Cd(x)Cd(y) (9)

where Cd(x) = sgn
(
bT
d hd(x)

)
and hd(x) =

[hd,1(x) . . . hd,K(x)]T are K weak learners weighted by

the vector bd = [bd,1 . . . bd,K ]T . The resulting binary de-

scriptor, which we call BinBoostK-D, is a D-dimensional

binary vector built using K weak learners by applying

C(x) = {Cd(x)}Dd=1
.

Substituting fB for fC in Equation (1) gives
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LB =

N∑

n=1

exp

(
−γ ln

D∑

d=1

Cd(x)Cd(y)

)
. (10)

This optimization problem is closely related to Equa-

tion (4), but instead of weighting the dimensions with

different αd values we use a constant weighting factor γ.

This enables us to compute the similarity more efficiently

as it is now equivalent to the Hamming distance. More

importantly, the {Cd(·)} functions are much more complex

than the weak learners hd as they are thresholded linear

combinations of weak learner responses. The resulting op-

timization is discontinuous and non-convex and in practice

the space of all possible weak learners h is discrete and

prohibitively large. In what follows we develop a greedy

optimization algorithm to solve this difficult problem and

jointly optimize over the weak classifiers of each bit, hd

and their associated weights bd.

We first proceed as in regular AdaBoost. We optimize the

{Cd(·)} functions iteratively, and at iteration d, the Cd(·)
function that minimizes Equation (10) is also the one that

maximizes the weighted correlation of its output and the

data labels [37]. Using this fact, at iteration d, the optimal

bd and hd can be taken as

argmax
bd,hd

N∑

n=1

ln Wd(n)Cd(x)Cd(y) , (11)

where

Wd(n) = exp

(
−γln

d−1∑

d′=1

Cd′(x)Cd′(y))

)
(12)

is a weighting that is very similar to the one used in

regular Adaboost. This means that pairs that are incorrectly

classified by the previous iterations are assigned a higher

weight, whereas the weight of those correctly classified is

decreased.

The sign function in Cd(·) is non-differentiable, and

Equation (11) is thus still hard to solve. We therefore apply

the spectral relaxation trick [30], [29] and approximate the

sign function using its signed magnitude, sgn(x) ≈ x. This

yields:

argmax
bd,hd

N∑

n=1

ln Wd(n)Cd(x)Cd(y)

≈ argmax
bd,hd

N∑

n=1

ln Wd(n)
(
bT
d hd(xn)

) (
bT
d hd(yn)

)

= argmax
bd,hd

N∑

n=1

ln Wd(n)hd(xn)
Tbdb

T
d hd(yn)

= argmax
bd,hd

bT
d

(
N∑

n=1

ln Wd(n)hd(xn)hd(yn)
T

)
bd .

(13)

As for Equation (6), we first select a vector hd(x) of

suitable weak classifiers by minimizing Equation (4) using

the algorithm of [3] on the training samples, this time

initially weighted by the Wd(n) weights. The vector bd

(a) Intensity-based (b) Gradient-based

Fig. 2. Overview of the intensity and gradient-based

weak learners. To compute the responses of intensity-

based weak learners, we compare the image intensity

values after Gaussian smoothing at two locations i
and j. Using boosting, we optimize both the locations

and Gaussian kernel sizes, S. The gradient-based

learners consider the orientations of gradients normal-

ized within a given region. Boosting allows us to find

the pooling configuration of the gradient regions and

optimize the values of the corresponding thresholds.

is defined only up to a scale factor, and we then solve for

it by looking for

argmax
bd

bT
d Mbd, s.t. ‖bd‖2 = 1 (14)

where

M =

N∑

n=1

ln Wd(n)hd(xn)hd(yn)
T . (15)

Eq. (14) defines a standard eigenvalue problem and the

optimal weights bd can therefore be found in closed-

form as the eigenvector of M associated with its largest

eigenvalue.

Although not globally optimal, this solution returns a

useful approximation to the solution to Eq. (11). Moreover,

thanks to our boosting scheme even a sub-optimal selection

of Cd(·) allows for an effective minimization.

We still have to explain how we choose the γ pa-

rameter. Note that its value is needed for the first time

at the end of the first iteration, and we set this pa-

rameter after finding C1 using the formula from regular

Adaboost. We use the rule γ = ν · 1

2
log 1+r1

1−r1
where

r1 =
∑N

n=1
W1(n) ln C1(xn)C1(yn) and ν is a shrinkage

parameter used to regularize our optimization as described

in [38]. In practice, we use ν = 0.4.

4 WEAK LEARNERS

The employed weak learner family encodes specific design

choices and desired descriptor properties. In this section

we present two weak learner types inspired from existing,

prevalent keypoint descriptors. The simpler, yet less dis-

criminative weak learners are based on pixel intensities.

The more complex and computationally expensive weak

learners rely on gradient images. Below we provide a

detailed description of each along with their parameters.
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4.1 Intensity-based learners

The intensity-based weak learners rely on BRIEF-like com-

parisons of pre-smoothed image intensities. More precisely,

we define the output of our weak learner as:

h(x̂S ; i, j, S) =

{
1 if x̂S(i) ≤ x̂S(j)

−1 otherwise
(16)

where x̂S(i) is the pixel intensity of x pre-smoothed with a

Gaussian kernel of size S ∈ {3, 5, 7, . . . , 15} at position i.

The above formulation allows us to optimize the selec-

tion of the sampling points as it was done, e.g. in [10],

except we minimize a loss function with boosting rather

than the responses’ corellation with a stochastic algorithm.

Inspired by the sampling scheme of BRISK [13] and

FREAK [39], we also optimize the value of the Gaussian

kernel size S which defines the amount of smoothing

applied to the image before comparing the intensity values,

in addition to the positions i and j. This adds an addi-

tional degree of freedom to our optimization framework

and, therefore, encompasses the formulation of many re-

cently proposed binary feature descriptors, such as BRISK,

FREAK and ORB.

4.2 Gradient-based learners

The gradient-based weak learners consider the orientations

of intensity gradients over image regions [40]. They are

parameterized by a rectangular region R over the image

patch x, an orientation e, and a threshold T , and are defined

as

h(x;R, e, T ) =

{
1 if φR,e(x) ≤ T

−1 otherwise
, (17)

with

φR,e(x) =
∑

m∈R

ξe(x,m) /
∑

e′∈Φ,m∈R

ξe′(x,m) , (18)

and

ξe(x,m) = max(0, cos(e− o(x,m)) , (19)

where o(x,m) is the orientation of the image gradient in x

at location m. The orientation e is quantized to take values

in Φ = {0, 2π
q
, 4π

q
, · · · , (q−1) 2π

q
} with q is the number of

quantization bins. As noted in [40] this representation can

be computed efficiently using integral images.

5 EXPERIMENTAL SETUP

In this section, we first describe our evaluation framework.

We then present a set of initial experiments which validate

our approach and allow us to select the correct parameters

for our descriptors. Our approach improves over the state-

of-the-art mostly with the binary version of our boosted

descriptors, and we focus here on this version. Nevertheless

the optimized parameters remain valid also for the floating-

point descriptor.

5.1 Evaluation framework

We evaluate the performance of our methods using three

publicly available datasets: Liberty, Notre Dame, and

Yosemite [4]. Each of them contains over 400k scale- and

rotation-normalized 64 × 64 patches. These patches are

sampled around interest points detected using Difference

of Gaussians and the correspondences between patches

are found using a multi-view stereo algorithm. The result-

ing datasets exhibit substantial perspective distortion and

changing lighting conditions. The ground truth available

for each of these datasets describes 100k, 200k and 500k

pairs of patches, where 50% correspond to match pairs,

and 50% to non-match pairs. In our experiments, we use

sub-sampled patches of size 32 × 32 and the descriptors

are trained on each of the 200k datasets and we use the

held-out 100k dataset for testing. We report the results of

the evaluation in terms of ROC curves and 95% error rate

which is the percent of incorrect matches obtained when

95% of the true matches are found, as in [4].

5.2 Weak learner types

To analyze the impact of the weak learner type on descriptor

performances, we train a BinBoost1-256 descriptor where

each bit corresponds to one weak learner. For our gradient-

based descriptor we use q = 8 orientation bins, as this is

equal to the number of bins proposed for SIFT.

First, we compared the sampling patterns employed in

the state-of-the-art binary intensity-based descriptors, such

as BRIEF, BRISK and ORB, with the pooling learned with

our framework when using intensity-based weak learners.

Fig. 3 shows the visualization of intensity tests and heat

maps of the spatial weighting employed by each descriptor.

For BRIEF, intensity tests are from an isotropic Gaussian

distribution with the origin of the coordinate system located

at the patch center [12]. By contrast, the sampling pattern

of BRISK is deterministic. The intensity tests of ORB are

selected to increase the variance of the responses, while

reducing their correlation. This results in a pronounced

vertical trend which can also be seen in the case of

BinBoost. Nevertheless, the heat maps show that the tests

for BinBoost-Intensity are more dense around the center of

the patch, similar to BRIEF, while the ones used in ORB

present a more uniform distribution.

To evaluate the influence of the weak learner type on

performance, in Fig. 4 we compared the results obtained

with BinBoost-Intensity and BinBoost-Gradient with those

of Boosted SSC, BRIEF, ORB, BRISK, D-Brief [14] and

SIFT. The performance of Boosted SSC remains inferior to

the other descriptors as the weak learners proposed in [3]

rely on thresholding single pixel intensity values and do

not provide enough discriminative power. Our experiments

show that even though BinBoost-Intensity with variable

Gaussian kernel size performs the best out of all the

intensity-based descriptors, it is only slightly better than

BinBoost-Intensity with filter size equal to 3. As shown

in Fig. 5, our learning framework does not find a clear

correlation between the size of the smoothing kernel and
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BRIEF BRISK ORB
BinBoost-Intensity

S = 3 variable S

Fig. 3. Visualization of the intensity tests (first row) and spatial weight heat maps (second row) employed by

BRIEF, ORB, BRISK and our BinBoost1-256 descriptor trained with intensity-based weak learners on rectified

patches from the Liberty dataset. BRIEF picks its intensity tests from an isotropic Gaussian distribution around

the center of the patch, while the sampling pattern of BRISK is deterministic. The intensity tests of ORB are

selected to increase the variance of the responses, while reducing their correlation. This results in a pronounced

vertical trend which can also be seen in the case of BinBoost. Nevertheless, the heat maps show that the tests

for BinBoost-Intensity are — similarly to BRIEF — more dense around the center of the patch while the ones

used in ORB present a more uniform distribution.
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Fig. 4. Performance of BinBoost1-256 with different weak learner types compared with the state-of-the-art binary

descriptors and SIFT as a baseline. Out of all descriptors based on intensity tests, BinBoost-Intensity performs

the best. This shows that our framework is able to effectively optimize over the other state-of-the-art binary

descriptors and boost their performances at no additional computational cost. Nevertheless, the performance

of BinBoost-Intensity cannot match that of floating-point SIFT which is outperformed when using the more

discriminative gradient-based weak learners (BinBoost-Gradient).

the distance to the patch center, contrary to the sampling

pattern of BRISK. Interestingly, even though the optimized

sampling scheme of ORB resembles this of BinBoost-

Intensity, our framework improves the results over BRIEF

much more than ORB. This may be explained when looking

at the spatial weighting employed by BinBoost and ORB,

where we can see that certain parts of the patch are much

more densely sampled in the case of BinBoost, whereas the

sampling scheme of ORB is rather uniform.

Nevertheless, BinBoost-Intensity cannot match the per-

formance of SIFT as the discriminative power of the

underlying weak learners is not sufficient. When using

gradient-based weak learners, we are able to outperform

128-dimensional floating-point SIFT with only 256 bits.

Since the performance of gradient-based weak learners

remains superior to the intensity-based learners, we use

only the former to compute our BinBoost descriptor.

5.3 Numerical parameters

Our boosting framework defines a generic optimization

strategy that unlike many previous approaches, such as

[4], does not require fine tuning of multiple parameters.

BinBoost has only three main parameters that provide a

clear trade-off between the performance and complexity of
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Fig. 6. Influence of (a) the number of orientation bins q and (b) the number of weak learners K on the descriptor

performance for dimensionalities D = 8, 16, 32, 64 bits. The performances are optimal with q = 8 orientation bins,

which is also the number used in SIFT. Increasing the number of weak learners K from K = 128 to K = 256
provides only a minor improvement—at greatly increased computational cost—and, hence, we choose for our

final descriptor K = 128.

Fig. 5. Visualization of the first ten intensity-based

weak learners with variable kernel size S trained on

the Liberty dataset. When optimizing on both the pixel

positions and the sizes of the Gaussian kernels, our

boosting framework does not yield a clear pattern, in

particular there is no clear correlation between the size

of the smoothing kernel and the distance to the patch

center, contrary to the sampling pattern proposed for

BRISK. It nevertheless outperforms BRISK in our ex-

periments.

the final descriptor: the number of orientation bins used

by the weak learners, the number of weak learners, and

the final dimensionality of the descriptor. We study below

the influence of each of them on the performance of our

descriptor.

Number of orientation bins q defines the granularity of

the gradient-based weak learners. Fig. 6(a) shows the results

obtained for different values of q and D. For most values of

D, the performance is optimal for q = 8 as finer orientation

quantization does not improve the performance and we keep

q = 8 in the remaining experiments. Interestingly, this is

also the number of orientation bins used in SIFT.

Number of weak learners K determines how many
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Fig. 7. Performance for different dimensionalities D.

With D = 64 bits, BinBoost reaches its optimal perfor-

mance as increasing the dimensionality further does

not seem to improve the results. In bold red we mark

the dimensionality for which BinBoost starts outper-

forming SIFT. Best viewed in color.

gradient-based features are evaluated per dimension and

in Fig. 6(b) we show the 95% error rates for different

values of K. Increasing the value of K results in increased

computational cost and since performance seems to saturate

after K = 128, we keep this value for our final descriptor.

Dimensionality D is the number of bits of our final

descriptor. Fig. 7 shows that with D = 64 bits, our

descriptor reaches its optimal performance as increasing

the dimensionality further does not seem to improve the

results.

Using these parameters we trained our compact BinBoost

descriptor on the Notre Dame dataset. A visualization of

the learned weighting and pooling configuration is shown in

Fig. 8 for the first 8 bits of the descriptor. The weak learners

of similar orientations tend to cluster about different regions

for each bit thus illustrating the complementary nature of

the learned hash functions.
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Fig. 8. Visualization of the selected weak learners

for the first 8 bits learned on 200k pairs of 32 × 32
patches from the Notre Dame dataset (best viewed on

screen). For each pixel of the figure we show the av-

erage orientation weighted by the weights of the weak

learners bd. For different bits, the weak learners cluster

about different regions and orientations illustrating their

complementary nature.
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Fig. 9. 95% error rates for binary descriptors of differ-

ent dimensionality. For reference, we plot the results

obtained with SIFT. BinBoost outperforms the state-

of-the-art binary descriptors and the improvement is

especially visible for lower dimensionality.

6 RESULTS

In this section we provide an extensive comparison of

our method against the state-of-the-art descriptors on the

Brown [4] and Mikolajczyk [19] datasets. We also show the

performance our descriptor for performing visual search on

the UKBench dataset [20].

We compare our approach against SIFT [1], SURF [2],

the binary LDAHash descriptor [5], Boosted SSC [3], the

binary ITQ descriptor applied to SIFT [11], and the fast

binary BRIEF [12], ORB [10] and BRISK [13] descriptors.

6.1 Implementation

For SIFT, we use the publicly available implementation of

A. Vedaldi [41]. For SURF, LDAHash, BRIEF, BRISK,

ORB and ITQ we use the implementation available from

their authors. For the other methods, we use our own

implementation or we report the results from the literature.

For Boosted SSC, we use 128 dimensions as this obtained

the best performance. When matching the descriptors we

use a fast POPCOUNT-based implementation for comput-

ing Hamming distances between binary descriptors and
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Fig. 10. Descriptor performances as a function of

their memory footprint. For floating-point descriptors

we assume 1 byte per dimension as this quantization

was reported as sufficient for SIFT [41]. Our BinBoost

descriptor offers a significantly lower memory footprint

than the floating-point descriptors while providing com-

petitive performances.
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Fig. 11. Descriptor performances as a function of their

matching times. The reported times were computed

from 100k test pairs (i.e. 100k distance computations

were performed) on a Macbook Pro with an Intel i7

2.66 GHz CPU using the POPCOUNT instruction and

averaged over 100 runs. To make the comparison

fair, we optimized the matching strategy for floating-

point descriptors by representing them with unsigned

characters. The advantage of binary descriptors, out of

which BinBoost performs the best in terms of 95% error

rate, is clear.

matched floating-point descriptors using their Euclidean

distance.

6.2 Brown datasets

We first compare our method using the Liberty, Notre

Dame and Yosemite datasets [4] according to the evalu-

ation protocol described in Sec. 5.1. Fig. 12 shows the

ROC curves for BinBoost and the state-of-the-art methods.

Table 1 summarizes the 95% error rates. Both show that

BinBoost significantly outperforms the baselines. It per-

forms almost twice as well as SIFT in terms of 95% error

rate, while requiring only 64 bits (8 bytes) instead of 128

bytes for SIFT. Moreover, since BinBoost can be efficiently
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Fig. 12. Comparison of our BinBoost descriptor to the state-of-the-art binary (left) and floating-point (right)

descriptors. In parentheses: the number of floating-point (f) or binary (b) dimensions and the 95% error rate.

Our BinBoost descriptor significantly outperforms its binary competitors across all false positive rates. It also

outperforms SIFT and provides similar performances to the recent floating-point descriptors, even though it is

much faster to match and has a lower memory footprint.

Binary Floating-point

Train Test
BinBoost128-64 BinBoost1-64 ITQ-SIFT [11] LDAHash [5] BRIEF BRISK SURF SIFT FPBoost512-64 Brown [4] Simonyan [6]

8 bytes 8 bytes 8 bytes 16 bytes 32 bytes 64 bytes 64 bytes 128 bytes 64 bytes 29 bytes 29 bytes

Yosemite
Notre Dame

14.54 26.80 30.56
51.58 54.57 74.88 45.51 28.09

14.80 11.98 9.67

Liberty 16.90 29.60 31.07 14.68 - -

Yosemite
Liberty

21.67 33.54 37.31
49.66 59.15 79.36 54.01 36.27

22.39 18.27 17.44

Notre Dame 20.49 31.90 36.95 17.90 16.85 14.51

Notre Dame
Yosemite

18.97 30.58 34.34
52.95 54.96 73.21 43.58 29.15

15.85 13.55 12.54

Liberty 22.88 38.13 34.43 20.85 - -

TABLE 1

95% error rates for different training and testing configurations and the corresponding results for BinBoost with

64 and 8 bits and its competitors. For the descriptors that do not depend on the training data, we write one result

per testing dataset, for others we give the results for two different training datasets. Below the descriptor names

we write the number of bytes used to encode them. For the floating point descriptors (SIFT, SURF, FPBoost,

Brown et al. [4], Simonyan et al. [6]) we assume 1 byte per dimension, as this quantization was reported as

sufficient for SIFT [41]. BinBoost significantly outperforms its binary competitors, while requiring less memory.

For reference, we also give the results of the floating-point descriptors: BinBoost performs similarly to the best

floating-point descriptors even though it is shorter and binary which enables a significant speedup in matching

time as shown in Fig. 11.

implemented using integral images, the computation time

of our descriptor is comparable with that of SIFT using

Vedaldi’s implementation—approximately 1ms per descrip-

tor on a Macbook Pro with an Intel i7 2.66 GHz CPU. The

performance improvement of BinBoost with respect to the

recent binary descriptors, such as LDAHash or BRIEF, is

even greater, BinBoost achieving a 95% error rate that is

almost a factor of 3 lower than that obtained with these

methods.

Since the dimensionality of the other binary descriptors

can be varied depending on the required performance

quality, Fig. 9 compares the 95% error rates of these

descriptors for different numbers of bits used. BinBoost

clearly outperforms them across all dimensions at the lower

end of the spectrum. However, the biggest improvement can

be seen for lower dimensionality.

Moreover, our BinBoost descriptor remains competitive

to the best descriptors of [4] and [6], even though the

memory footprint of their descriptors is almost 4 times

greater as shown in Fig. 10. The real advantage of Bin-

Boost, however, is that it allows for extremely fast similarity

computation using the Hamming distance2, whereas the

descriptors of [4] and [6] are floating-point and cannot

benefit from the same optimization, even when quantized

very coarsely. As presented in Fig. 11, this results in a

speedup of over 2 orders of magnitude in terms of similarity

search.

To verify the performance of our descriptor, we also

compare it to several binarization techniques applied to

FPBoost. Results are displayed in Fig. 13. Binarizing the

FPBoost coordinates by thresholding them at an optimal

threshold found as in [5] results in large binarization errors

significantly decreasing the accuracy of the resulting binary

2On modern CPUs this can be implemented as a bitwise XOR operation
on the descriptors followed by a POPCOUNT instruction which counts the
number of bits set to 1.
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Fig. 13. Performance of our BinBoost descriptor

compared with different binarization methods applied

on FPBoost. Binarizing the discriminative projections

found with FPBoost either by simple thresholding or

with Iterative Quantization (ITQ) results in large bina-

rization errors significantly reducing its accuracy. On

the other hand, the sequential projection learning of

S3PLH requires a fairly large number of bits to recover

the original performance of FPBoost. In contrast, by

jointly optimizing over the feature weighting and pool-

ing strategy of each bit, our BinBoost approach results

in a highly compact and accurate binary descriptor

whose performance is similar with FPBoost but at a

fraction of the storage cost.

representation. This error can be reduced using Iterative

Quantization [11], however, the orthogonality constraints

used in this approach largely limit the extent to which

it can be minimized. In contrast, sequential projection

learning (S3PLH) [29] can find non-orthogonal projections

that more faithfully mitigate binarization error, however, it

requires a fairly large number of bits to recover FPBoost’s

original performance. Unlike these methods, by effectively

combining multiple weak learners within each hash func-

tion, our algorithm results in a more accurate predictor with

far fewer bits.

6.3 Mikolajczyk dataset

We tested the generalization performance of our descriptor

when trained on the Brown datasets and evaluated on the

significantly different Mikolajczyk dataset [19]. We report

results using the Notre Dame dataset, however, similar

results were found for all the Brown datasets. We followed

the evaluation protocol of [19] that compares descriptors

using a single keypoint detector, and used the OpenCV

SURF Hessian-based detector. For each image pair we

detect 1000 keypoints per image and match them using

exhaustive search. We then filter outliers using a distance

ratio threshold of 0.8 as in [1]. We evaluate each descriptor

in terms of the recognition rate which is the number of

correctly matched keypoints.

Fig. 14 shows the results obtained for the bark,

boat, graf, trees, ubc and wall sequences. In

all the sequences BinBoost1-256 and FPBoost512-64

outperform the other descriptors. The performance of

BinBoost128-64, however, does not perform as well as

when evaluated on the Brown datasets, which indicates

that there is an inherent efficiency tradeoff when train-

ing on a different condition. Nonetheless, the extended

BinBoost128-128 and BinBoost128-256 descriptors outper-

form the other methods while being shorter or of the same

length.

6.4 Visual Search on UKBench

We further evaluate our approach for performing visual

search using the University of Kentucky Benchmark (UK-

Bench) dataset [20] that contains over 10k images of 2600

objects, each object being depicted in 4 images taken from

different viewpoints. As in other approaches, we first build

a database of the almost one million descriptors extracted

from all the dataset images. For each query image, we then

search for the nearest neighbors in the database using their

associated keypoint descriptors to vote for the most similar

images in the database. Finally, we sort the database images

according to the number of votes they receive and retrieve

those associated with the highest number of votes. As with

our previous experiments, we consider descriptors trained

using the Notre Dame dataset with similar results seen for

the other Brown datasets. In our evaluation we randomly

selected 500 query images from the dataset and use the

remaining 10k images to create a database. We ran the

experiment three times and report the average results along

with the standard deviation values.

Table 2 summarizes the results we obtained for different

descriptors. To evaluate the performance we report mean

average precision (mAP) and percentage of correct number

of images retrieved at the top of the list (Correct@1). Out

of all the evaluated descriptors BinBoost128-256 performs

the best followed by BinBoost1-256. FPBoost performs

slightly worse than BinBoost, while still outperforming

SIFT and other intensity-based binary descriptors. Overall,

the boosted keypoints descriptors provide the best perfor-

mance of all the tested descriptors, even though they were

trained on a significantly different dataset.

7 FACE DESCRIPTORS

In this section we evaluate our method for matching face

images. While this constitues a rather different problem

than modeling the appearance of local keypoints, as we

show our method is generic and can be easily adapted to

new application domains. For our evaluation we used a

dataset of face images [42] that consists of faces imaged

under different viewpoints. From this dataset we created

two sets of 100k and 200k pairs of images. Similarly to

the Liberty, Notre Dame and Yosemite datasets, each set

is balanced and contains an equal number of image pairs

belonging to the same person as those of different people.

We used the 200k dataset to train our descriptors and the

100k set to test them.

Fig. 15 compares the learned spatial weightings obtained

with the Brown and Faces datasets. When we train our
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Fig. 14. Recognition rates for the Mikolajczyk dataset. The proposed BinBoost and FPBoost descriptors

significantly outperform the competitors, both binary and floating-point, while being shorter or of the same length.

This shows that, although generalization of the learned descriptors remains a challenging task, they can still

perform well under conditions that differ greatly from the training conditions.

Liberty Notre Dame Yosemite Faces

 

 

 

 

 

 

 

 

Fig. 15. Learned spatial weighting obtained with BinBoost1-256 trained on the Liberty, Notre Dame, Yosemite

and Faces datasets. For the first three datasets, the learned weighting closely resembles the Gaussian weighting

employed by SIFT (white circles indicate σ/2 and σ used by SIFT). However, the learned spatial weighting on

the Faces dataset is focused about the eyes and mouth that constitute discriminative facial features.
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Descriptor mAP ± σ Correct@1 ± σ
BRISK 0.402 ± 0.006 61.830 ± 0.884

ORB 0.418 ± 0.005 64.902 ± 1.931

SIFT 0.455 ± 0.008 68.235 ± 2.183

BRIEF 0.457 ± 0.014 68.562 ± 0.493

FPBoost512-64 0.476 ± 0.006 70.000 ± 1.709

BinBoost128-128 0.493 ± 0.017 72.222 ± 2.747

BinBoost1-256 0.533 ± 0.010 76.144 ± 2.467

BinBoost128-256 0.556 ± 0.008 79.216 ± 1.870

TABLE 2

Results of visual search on the UKBench dataset [20]:

mean average precision (mAP) and percentage of cor-

rectly retrieved images at the first position (Correct@1)

are reported. Average results are shown across three

random train and test splits along with the stan-

dard deviation. BinBoost128-256 outperforms the other

descriptors, even though it is trained on the Notre

Dame dataset. The other learned descriptors, namely

BinBoost1-256 and FPBoost512-64, achieve worse re-

sults, though their performance is still better than SIFT

and the other intensity-based descriptors.

BinBoost descriptor on the images extracted around interest

points, the weak learners clearly concentrate around the

center of the patch. In fact, the obtained weighting closely

resembles the Gaussian weighting employed by SIFT. In

contrast, for face images the weak learners concentrate

about the lower and upper image regions that correspond

to the location of the eyes and mouth, and as also observed

in [43] constitute discriminative facial features. This further

demonstrates the flexibility of our approach and its ability

to adapt to new types of image data.

Fig. 16 shows the qualitative results obtained using

BinBoost1-256. BinBoost remains largely invariant to the

significant viewpoint and intensity changes present in this

dataset, while still being able to discriminate between

different people. Most of the mis-classifications are due to

occlusions and extreme viewpoint variation such as side

views.

In Fig. 17 we plot the quantitative results of

BinBoost1-256, FPBoost256-64 and BinBoost128-64 de-

scriptors compared with LBP, a widely used face descrip-

tor [43]. Our boosted descriptors result in a significant

improvement over the baseline. Furthermore, compared

with LBP our FPBoost descriptor achieves a reduction

in 95% error rate by more than a factor of 2. Similar

to [44], [45] this demonstrates the potential advantages

of exploiting image data to learn a face descriptor. More

importantly, it illustrates the flexibility of our approach

beyond local keypoint descriptors.

8 CONCLUSION

In this paper we presented an efficient framework to train

highly discriminative and compact local feature descriptors

that leverages the boosting-trick to simultaneously optimize

true positives true negatives false positives false negatives

Fig. 16. Matching results on the Faces dataset us-

ing our 256-bit BinBoost1-256 at the 95% error rate,

i.e. when 95% of the positive image pairs are cor-

rectly classified. BinBoost remains robust to significant

viewpoint changes and motion blur. The mis-classified

examples are mostly due to occlusion and extreme

variations in viewpoint such as side views.
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Fig. 17. The performance of our boosted descriptors

on the Faces dataset compared with the commonly

used LBP face descriptor [43]. BinBoost1-256 signif-

icantly outperforms LBP. Similarly to the results ob-

tained for local feature descriptors, we can see that

BinBoost128-64 performs equally to BinBoost1-256, but

with only 64 bits per descriptor. FPBoost performs even

better with the 95% error rate reduced by more than

twice compared with the LBP baseline.

both the weighting and sampling strategy of a set of non-

linear feature responses. We first showed how boosting can

be used to result in an accurate yet compact floating-point

descriptor. We then considered a binary extension of our

approach that shares a similar accuracy but operates at a

fraction of the matching and storage cost. We explored the

use of both intensity- and gradient-based features within

our learning framework and performed an evaluation across

a variety of descriptor matching tasks. In each task, our
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approach achieved a signficant improvement over the state-

of-the-art descriptors, such as BRIEF and BRISK, in both

accuracy and efficiency by optimizing their sampling pat-

terns. Finally, we showed that our method can be easily

generalized to new applicaiton domains, such as faces.
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Politècnica de Catalunya and MSc degree
in Electronics Engineering from Politecnico
di Torino in 2010. He joined EPFL in 2010
where he is currently pursuing his PhD in
computer vision. His research interests in-
clude visual search, augmented reality and
machine learning. He worked with Telefonica
R&D, Qualcomm and Google.

Mario Christoudias received a BS degree
in electrical and computer engineering from
Rutgers University in 2002 and MS and PhD
degrees in computer science from the Mas-
sachusetts Institute of Technology in 2004
and 2009. He is currently a postdoctoral re-
searcher in the Computer Vision Laboratory
at EPFL. His main research interests are in
the areas of computer vision and machine
learning.

Vincent Lepetit is a Professor at the Institute
for Computer Graphics and Vision, TU Graz
and a Visiting Professor at the Computer
Vision Laboratory, EPFL. He received the en-
gineering and master degrees in Computer
Science from the ESIAL in 1996. He received
the PhD degree in Computer Vision in 2001
from the University of Nancy, France, after
working in the ISA INRIA team. He then
joined the Virtual Reality Lab at EPFL as a
post-doctoral fellow and became a founding

member of the Computer Vision Laboratory. His research interests
include vision-based Augmented Reality, 3D camera tracking, object
recognition and 3D reconstruction.


