
Thick Boundaries in Binary Space and Their Influence

on Nearest-Neighbor Search

Tomasz Trzcinski, Vincent Lepetit and Pascal Fuaa

a{firstname.lastname}@epfl.ch

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Computer Vision Laboratory

CH-1015 Lausanne, Switzerland
tel. +41216936862

Abstract

Binary descriptors allow faster similarity computation than real-valued ones
while requiring much less storage. As a result, many algorithms have re-
cently been proposed to binarize floating-point descriptors so that they can
be searched for quickly. Unfortunately, even if the similarity between vectors
can be computed fast, exhaustive linear search remains impractical for truly
large databases and Approximate Nearest Neighbor (ANN) search is still re-
quired. It is therefore surprising that relatively little attention has been paid
to the efficiency of ANN algorithms on binary vectors and this is the focus
of this paper.

We first show that binary-space Voronoi diagrams have thick boundaries,
meaning that there are many points that lie at the same distance from two
random points. This violates the implicit assumption made by most ANN
algorithms that points can be neatly assigned to clusters centered around
a set of cluster centers. As a result, state-of-the-art algorithms that can
operate on binary vectors exhibit much lower performance than those that
work with floating point ones.

The above analysis is the first contribution of the paper. The second one is
two effective ways to overcome this limitation, by appropriately randomizing
either a tree-based algorithm or hashing-based one. In both cases, we show
that we obtain precision/recall curves that are similar to those than can
be obtained using floating point number calculation, but at much reduced
computational cost.

Keywords: Approximate Nearest Neighbor Search, Binary vectors,
Locality Sensitive Hashing, Hierarchical k-means

Preprint submitted to Pattern Recognition Letters November 4, 2011

1. Introduction

The problem of matching high-dimensional descriptors against large data-
bases is pervasive in Computer Vision, e.g. in image-retrieval, or pose-
estimation. When there are millions of such descriptors, linear search be-
comes prohibitively expensive, even after dimensionality reduction [1, 2] and
no generic, exact, and more efficient algorithm is known.

Approximate Nearest Neighbor (ANN) search constitutes one effective
approach to overcoming this limitation and there are many algorithms that
can handle real-valued descriptors such as the Scale Invariant Feature Trans-
form (SIFT) [3] or Speeded Up Robust Feature (SURF) [4] descriptors.
These algorithms rely on modified kd-trees [5, 6], multiple randomized kd-
trees [7], hierarchical k-means (HKM) trees [8, 9], spill trees [10], vantage-
point trees [11], or hashing functions [12]. A different approach to speeding up
nearest-neighbor search is to binarize the real-valued descriptors using tech-
niques such as Boosting [13], hashing [12, 14], Principal Component Anal-
ysis (PCA) or Linear Discriminant Analysis (LDA) based methods [15, 16],
quantization [17] and Semantic or Spectral Hashing [18, 19]. Because the
similarity between the resulting binary vectors can be evaluated using the
Hamming distance, which can be computed much faster than the Euclidean
one on modern CPUs, linear search is more efficient but remains too slow
for large-scale applications. In favorable cases, the binary vectors can be
used as indices to directly access their nearest neighbors [19] which provides
sub-linear complexity of the search. Unfortunately, this stops being possible
when the typical Hamming distance between nearest neighbors is larger than
a few units.

To get the best of both worlds under general conditions and to exploit
the potential of binary descriptors, ANN search is necessary. Little attention
has been paid to the performance of ANN algorithms on binary, as opposed
to real-valued, vectors. Some of the algorithms discussed above such as Spec-
tral Hashing are not adapted to binary vectors because they involve a PCA
decomposition. Other methods can be used by treating binary descriptors
as vectors of zeros and ones encoded as floating-point numbers. Even with
the same search-accuracy, this encoding negates the advantages of binary
vectors over real-valued ones: their compactness and the fact that the Ham-
ming distance can be computed faster than the Euclidean one. Finally, there
are algorithms such as vantage-point trees and HKM that can be modified to
only deal with binary vectors and use the Hamming distance as a similarity

2

measure. However, as we show, their accuracy is much lower.
The first contribution of this paper is to show that this performance loss

can be traced to the fact that in Hamming spaces, unlike in Euclidean ones,
the number of points that lie at the same distance from two random points,
i.e. the points lying at the boundary of a Voronoi diagram, encompass a
large proportion of the space. In other words, the Voronoi diagram has thick
boundaries. This breaks the assumption made by many ANN algorithms
that points can be unambiguously clustered with their closest neighbors.
This phenomenon is different from the well-known curse of dimensionality
which becomes apparent only for the high dimensional data [20]. In the case
of binary spaces, the thick boundaries of the Voronoi diagram influence the
search regardless of the data dimensionality.

From this understanding comes the second contribution of the paper, an
effective way to overcome the above mentioned problems inherent to Ham-
ming spaces by creating multiple randomized data structures. Randomiza-
tion produces structures that are independent from each other and therefore
complementary. It solves the thick boundary problem and yields results sim-
ilar to those obtained by converting the vectors to floating point values, but
at a fraction of the computational cost. We instantiate this idea in two dif-
ferent ways, the first inspired by HKM trees and the second by the Locality-
Sensitive Hashing scheme originally proposed for integer vectors [21]. In the
first case, we replace the cluster centroids computed at each level of the tree
by randomly chosen points and create multiple trees in this manner. In the
second, we introduce an improved mechanism for selecting random subsets
of coordinates used to index the vectors.

2. Related Work

Local descriptors are high-dimensional vectors describing local regions
extracted from images, and used in many applications of Computer Vision.
In many of those applications, we need to match keypoints extracted from
images against a large database as we do in our experiments: The distances
between descriptors of keypoints corresponding to the same 3D point should
be small. While the first descriptors were real-valued vectors, a recent trend
focuses on binary descriptors, as they are more compact and distances be-
tween them can be evaluated efficiently. They can be computed directly
from the images [22], or from real-valued descriptors as in Locality Sensitive
Hashing [12], Semantic or Spectral Hashing (SH) [18, 19], or LDAHash [16].

3

SH was designed to create binary vectors that can be used as table indices to
directly access their nearest neighbors. However, as shown in Fig. 1, applying
it to SIFT descriptors yields too large average Hamming distances between
nearest neighbors to be practical. LDAHash [16] produces average distances
that are smaller but still too large.

Figure 1: Comparison of the distributions of distances from the descriptor to
its first and second nearest neighbors in the Hamming spaces generated using
LDAHash and SH on our 500k database. The average Hamming distance
between descriptors is larger than 1 for both LDAHash and SH-generated
128-bit descriptors. However, because the distances are spread more widely
for LDAHash vectors, all ANN algorithms tend to perform better on those,
which is not all that surprising since SH was designed for a different purpose.

In short, even when using sophisticated binary descriptors, quickly query-
ing large databases still requires effective ANN methods. Even though Near-
est Neighbor search has been widely discussed in the literature, no known
generic algorithm is both exact and more efficient than brute force search.

4

Many efficient approximate algorithms have been proposed for large-scale
search. According to a recent comparative study [24], the best ones for
querying large databases are the randomized kd-trees [7] and hierarchical
k-means tree algorithm [8, 9].

The randomized kd-trees [7] are a recent modification of the original kd-
trees [25], which involved building a tree by recursively splitting in half along
the dimension in which it exhibits the greatest variance. This performs well in
low-dimensional spaces but looses its effectiveness as dimensionality increases
[26]. To prevent this, sets of randomized kd-trees can be built by recursively
splitting along dimensions randomly chosen among the first D dimensions of
greatest variance. Combining several trees with different splits mitigates the
effects of quantization errors. Unfortunately, as we show in Section 3, this
is a brittle technique when applied to binary vectors because a query vector
can be moved to the wrong branch if only one of its bit is flipped, e.g. due
to noise.

The hierarchical k-means tree [8, 9] represents another successful alter-
native to brute force search. It recursively uses the k-means algorithm to
split the data into k clusters. At run-time, a query vector follows the branch
that corresponds to the closest centroid and back-tracking can be invoked to
explore several leaves. Hierarchical k-means rely on means of vectors, which
is problematic when dealing with binary vectors as we also see in Section 3.

Vantage-point trees [11] avoid the need to compute means by recursively
picking a single vector among the data that reaches a node and splitting the
others into those that are closer and those that are further. As we will show
in Sec. 3, this method also performs poorly on binary vectors.

In short, state-of-the-art ANN techniques work well on real-valued vectors
but not on binary ones. Furthermore, there is little work in connection to
the latter. In [27], an Additive Binary Tree (ABT) is associated to each
binary vector. Each one of its nodes contains the frequency of 1’s in a sub-
part of the vector and this structure is used to stop the computation of the
distance between two vectors early when the match is not promising. This
approach, however, is still linear in the size of the database, and the speed
gain is not clear compared to the full computation of the Hamming distance
on modern hardware. In [23], the database is represented by a 256-ary tree
in which each node corresponds to one byte of the vector. The parts of the
tree that contain only one vector are pruned and replaced by a single leaf.
This approach is sensitive to noise as changing a single bit may change how
the branches are explored. In [28], vectors are represented by a number of

5

Table 1: Precisions when looking for the first and second nearest neighbors
for different methods and comparable query times, approximately 0.2 ms per
query, for a dataset of 500k descriptors. The performances of state-of-the-art
methods drop when they are applied on the binary 128-vectors obtained by
running LDAHash [16] on SIFT vectors. This is especially noticeable for the
HKM algorithm when the centroids are forced to be binary vectors. The
Parc-trees and Uniform LSH are two methods we introduce in Section 4 to
avoid this loss of accuracy.

Precision for first position second position

SIFT binary SIFT binary
descriptors descriptors descriptors descriptors

hierarchical k-means
0.94 0.82 0.93 0.79

with real-valued centroids
kd-trees 0.98 0.78 0.97 0.75
hierarchical k-means

- 0.32 - 0.29
with binary centroids
vantage-point trees 0.35 0.17 0.31 0.15

parc-trees 0.94 0.91 0.91 0.92
Original LSH for binary
vectors [21]

- 0.92 - 0.95

Uniform LSH - 0.93 - 0.96

random permutations of bits. For each permutation, the vectors are sorted
in a lexicographic order and when the query comes, the binary search is find
the closest vectors. Although this method provides a sub-linear complexity,
the memory required to store the sorted lists is a multiple of the dataset
size. Moreover, it is reported to provide identical performance to the original
LSH [21] which is much more memory efficient.

3. Thick Borders and Performance Loss

In this section, we first demonstrate that state-of-the-art ANN algo-
rithms directly applied to binary vectors perform worse than when applied to
floating-point ones. We then show that Voronoi diagrams have thick bound-
aries in binary spaces, which is what causes this performance drop.

6

3.1. ANN on Binary Vectors

To perform the comparison, we collected many images of Venice from
the Flickr 1 database and created a first dataset containing 500k feature
points and their SIFT descriptors. We then binarized these using the publicly
available implementation of LDAHash into 128-bits vectors [16] whose length
was shown to provide a good compromise. We used exhaustive linear-search
to find the closest neighbors of each descriptor and we use this information
as a ground-truth.

Table 1 summarizes our precision results for the first and second positions.
The first simply is the the percentage of correct nearest neighbor that are
retrieved. The second is computed by retrieving two nearest neighbors and
checking whether both, only one, or none are the correct first two nearest
neighbors of the query. The average proportion of correct matches divided
by 2 is then taken to be the precision at the second position.

The results for the kd-trees and HKM algorithms were obtained using
the publicly available code of the FLANN library [24], which automatically
optimizes the algorithms parameters. We used our own implementation of
the vantage-point trees.

The kd-trees and vantage-point trees can work on binary vectors without
any modification since they do not involve averaging. By contrast, HKM
involve computing centroids. We therefore tested two different versions of
the algorithm, either rounding the coordinates of the centroids so that they
remain binary vectors or using the floating-point coordinates.

As a baseline, we plot in the first column the results for matching the
SIFT floating-point vectors. In the second column, we plot the systematically
worse equivalent results using binary vectors. The degradation is noticeable
for kd-trees and HKM, even if we treat binary vectors as floating-point ones.
The performance drop is even more noticeable for the vantage-point trees.

As a sanity check, even though Spectral Hashing [19] is not truly designed
to produce vectors that can be searched by ANN but rather used as indices
to directly access their nearest neighbors, we ran the same series of tests on
the vectors it produces. The ANN precision rates are globally lower but we
observed the same behavior.

1http://www.flickr.com

7

 0
 20

 40
 60

 80
 100

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

|S
d
|
/

2
L

D=dH(u,v)

d / D

(a) (b)

Figure 2: Thick borders of Voronoi diagrams in binary space. (a) A signifi-
cant proportion of the space is equidistant from two arbitrary points. In this
example, four vectors are equidistant to the vectors u and v which accounts
for half of the population. This makes the HKM algorithm fail on binary
vectors. (b) Proportion of the binary vectors w that belong to the sets Sd

defined in Eq. (1) as a function of the distance D = dH(u, v) and d. It is
maximal for d = D/2, which corresponds to the set of vectors equidistant
to u and v, and remains large even for large values of D. This phenomenon
differs from the curse of dimensionality as it affects the data regardless of its
dimensionality.

3.2. Interpretation

That kd-trees perform poorly on binary vectors is not that surprising
since the splits are performed one dimension at a time and binary vectors
can take only two values per dimension. Hence this method is sensitive to
flip noise.

To understand the performance drops for the HKM and the vantage-point
tree, one must consider that the topology of the Hamming space is different
than the Euclidean one. This is because of the discrete nature of the binary
spaces where many vectors are equidistant to two random points.

This affects the vantage-point trees because many vectors may lie on
the splitting sphere: If the dimensionality of the binary space is L and the
sphere radius is D, the proportion of uniformly distributed vectors that lie
on the sphere boundary is 1

2L

(

L
D

)

. For example, for L = 16 and D = 8, this

8

represents 20% of the binary space, an enormous fraction. This is problematic
because the algorithm depends on the assumption that the splits separate
the data well.

The same thing happens with the HKM trees, especially when one bi-
narizes the centroids. As explained below, the boundaries of the Voronoi
diagram defined by such binarized centroids contain a significant proportion
of the binary space. This is detrimental to the algorithm because points in
those thick boundaries can be arbitrarily assigned to one or the other cluster
and can fall down the wrong branch of the tree at run-time.

Let us consider two L-dimensional binary centroids u and v. We would
like to evaluate the number of vectors around the boundary defined by u and
v, that is, around the hyperplane made of w vectors equidistant from u and
v. To this end, let us consider the cardinality of the sets Sd defined by:

Sd = {w such that dH(v, w) = dH(u, w) +D − 2d} , (1)

where dH(·, ·) is the Hamming distance, and D the Hamming distance be-
tween u and v. The Sd family spans the Hamming space, with u ∈ S0,
v ∈ SD, and SD/2 the set of vectors vectors equidistant from u and v.

u and v have L−D bits in common and D bits that are different. Let us
first consider the case when D is even. For a vector w to belong to Sd, d bits
among the D different bits must be changed between u and w. In addition
any number n of bits among the L − D common bits can also be flipped
between u and w: We then have dH(u, w) = n+ d and dH(v, w) = n+D − d,
and w indeed belongs to Sd.

The number of possible such w vectors is therefore 2L−D
(

D
d

)

and their

proportion of the full space is 2
L−D

2L

(

D
d

)

= 1

2D

(

D
d

)

. Remarkably this expression
does not depend on the dimension L of the space but only on D and d. We
plot its values in Fig. 2(b).

This expression reaches its maximum for d = D/2, that is, for the set of
vectors that lie at equal distance from vectors u and v. Using Stirling’s ap-

proximation [30], this expression for d = D/2 can be approximated by
√

2

πD

when D increases, and therefore slowly decreases towards 0 (see Fig. 2(b)).
For example, when D = 2, 50% of the space lies at equal distance from the
2 centroids! For D = 64, 10% of the space is still equidistant from the cen-
troids. As a result, the borders of the Voronoi diagram defined by u and v

contain a significant proportion of the binary space which leads to a severe
performance drop of the HKM algorithm.

9

When D is odd, no vector is equidistant from u and v. However, we can
derive a similar expression for the number of points for which the distances to
u and v differ by 1. The number of such points remains large. The borders of
the Voronoi diagram defined by the centroids in the HKM algorithm therefore
contain a significant proportion of the binary space.

4. Randomized Data Partitioning

In this section, we address the above-mentioned shortcoming of state-of-
the-art ANN search algorithms in Hamming spaces, and describe two simple
yet effective ANN search methods that work by randomizing data partition-
ing.

4.1. Parc-Trees

This first algorithm relies on multiple trees. Like the nodes of a hierar-
chical k-means (HKM) [8, 9] tree, the parc-tree nodes split the data into k
parts by storing k vectors we call centroids, and associating the data with the
closest centroid. Each non-terminal node has k children, corresponding to
the different parts. By contrast with HKM, we do not optimize on the cen-
troids but randomly select them among the data vectors that reach the node,
except those which have previously been used. The recursion stops when the
number of data vectors is less than k. Because of the randomization, the
trees are independent from each other.

At run-time, a query vector recursively follows the branch associated to
the closest node vector until it reaches a leaf, as in HKM. In HKM however,
the leaves have to store all the data that reach them, and a linear search
over this data is required to find the vector closest to the query vector as
the candidate nearest neighbor. In parc-trees, the centroids belong to the
dataset and when the query vector reaches a leaf, we already computed its
distances to the centroids of the nodes it visited. Hence, a candidate nearest
neighbor is chosen to be the closest vector among those in the leaf and the
centroids of the visited nodes.

The query operation is repeated over all T trees and the best match
is retained. This allows the parc-trees to mitigate the quantization error
introduced by the thick Voronoi boundary: We can find the correct nearest
neighbor even if it is present in only one visited node among all the trees.

The influence of parameters T and k on the obtained precision and com-
putational time can be seen in Fig. 3. The performance increases with the

10

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

P
re

c
is

io
n

 a
t

1

Time per query [us]

kNN search binary vectors - comparison of hashing schemes

PARC (branching 32)
PARC (branching 64)

PARC (branching 128)
 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 20 40 60 80 100 120 140

P
re

c
is

io
n

 a
t

1

Time per query [us]

kNN search binary vectors - comparison of hashing schemes

Uniform LSH (18 bits)
Uniform LSH (16 bits)
Uniform LSH (14 bits)

Figure 3: Comparison of precision for first position with different parameters
for the parc-trees and Uniform LSH on the 500k binary vectors dataset. For
PARC trees (left) we plot the results for T = 8, 16, 24, 32, 36, 40 trees and
different branching factors. For Uniform LSH (right) we plot the results for
30, 35, 40, 45, 50, 55, 60 hashing tables with various key lengths.

number of trees T , until it saturates, linearly with T . Increasing the branch-
ing factor k also improves the performance. The average tree depth then de-
creases, but the computation time still increases: A tree of depth d contains
k + k2 + k3 + . . . kd ≈ kd vectors, so a tree of S data vectors is approxima-
tively of depth log S/ log k. The number of distance computations required
when dropping a query vector into the tree is therefore k log S/ log k, which
increases with k sublinearly.

Most of the operations involved by this approach are Hamming distance
computations. They amount to an xor operation followed by a popcnt in-
struction present on modern CPUs, and are much faster to evaluate than the
Euclidean distance between floating-point vectors. Moreover, the T trees can
be simultaneously queried on a multi-core machine, which means we incur
only a limited penalty for using several trees.

4.2. Uniform LSH

We also developed an ANN method inspired by the Hashing-based method
of [21], which involves converting integer vectors into binary ones and ran-
domly selecting and concatenating bits from them to generate multiple hash-
ing keys. A query vector is then matched against the vectors in the buckets
corresponding to its keys values by linear search. The smaller the lengths
of the keys, the greater the size of the buckets becomes, which yields higher
precision at the cost of increased computational time. This simple scheme

11

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0 20 40 60 80 100 120 140 160 180

P
re

c
is

io
n

 a
t

1

Time per query [us]

kNN search binary vectors - comparison of hashing schemes

LSH (18 bits) 500k
Uniform LSH (18 bits) 500k

LSH (14 bits) 500k
Uniform LSH (14 bits) 500k

LSH (14 bits) 900k
Uniform LSH (14 bits) 900k

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0 20 40 60 80 100 120 140 160 180

P
re

c
is

io
n

 a
t

2

Time per query [us]

kNN search binary vectors - comparison of hashing schemes

LSH (18 bits) 500k
Uniform LSH (18 bits) 500k

LSH (14 bits) 500k
Uniform LSH (14 bits) 500k

LSH (14 bits) 900k
Uniform LSH (14 bits) 900k

Figure 4: Comparison of precision for first (left) and second (right) positions
for the original LSH and Uniform LSH with hashing keys optimized as ex-
plained in Section 4.2. We varied the number of keys, their lengths and the
sizes of the datasets. While the improvement is limited, this demonstrates
that the hashing keys can be optimized in Hamming spaces.

performs well, as our experiments show. As for parc-trees, most of the oper-
ations are Hamming distance evaluations, which can be performed efficiently,
and searches, which can be parallelized.

However, the random selection of coordinates may lead to unnecessary
overhead, as some coordinates may be selected more frequently than others,
whereas some of them may not be picked at all. This problem can be solved
by increasing the number of keys, but to run fast, it is desirable to use as
few keys as possible.

To resolve this dilemma, we optimize the keys so that the bits selected
to generate the keys are distributed more uniformly. This way, the keys
generate more various partitioning of the database. More formally, we can
define the keys Ki as sets containing the selected bits coordinates: Ki =
{cij ∈ [1;L] | j ∈ [1;n]} where L is the dimensionality of the binary vectors,
n is the number of bits in a key. We also define Nk as the number of times a
given coordinate is used in a key: Nk = |{cij = k | i ∈ [1;m] and j ∈ [1;n]}|,
where m is the number of keys. Then we optimize the keys to minimize

min
{Ki}

∑

k

(Nk −N)2 (2)

with N = n ·m/L, the ideal number of times a coordinate should be picked.
To do this, we use a simple greedy algorithm that generates the keys one
by one, by randomly selecting the bits among those which were used less

12

often for the previous keys. We call this modification Uniform LSH as the
distribution of the bits used in the keys is optimized to be more uniform and
hence partition the dataset better.

We experimented with different numbers of keys and numbers of bits per
key used. The results of those experiments are shown in Fig. 3. Computation
times increase linearly with the number of keys, but the precision of the search
also increases. Similarly, the lower the number of bits per key used, the bigger
the data partitions and hence the longer the search time. However, since we
perform a linear search within the selected data partition, shorter keys (and
bigger data partitions) lead to performance improvement.

Overall, as it can be seen in Fig. 4, the resulting Uniform LSH algorithm
improves performances over those of the original LSH.

5. Results

In this section, we compare parc-trees and uniform LSH against kd-trees
and HKM trees. The results were obtained for the 500k Venice dataset of
128-bit binary descriptors from Section 3.1. To see if the results hold also
for bigger datasets, we created two more datasets containing 900k and 1.5M
binary descriptors which were generated by binarizing the SIFT descriptors
extracted from more Flickr images of Venice. We draw the plots by setting
the parameters of all algorithms so that the query time is approximately the
same. To produce the different points in the plots, the number of hashing
tables of LSH varied from 30 to 60. The test datasets are larger than the ones
used to evaluate the recent FLANN library [24] which mostly contained only
100k vectors. Furthermore, datasets of comparable sizes are frequently used
for real-life applications, such as image-based 3D reconstruction. The results
presented here are the average over three runs. The computation times were
evaluated on a computer with two Intel Xeon E5620 2.4 GHz CPUs and
48 Gb RAM.

Fig. 5 presents the comparison of different ANN search algorithms applied
to binary descriptors. LSH outperforms all tree-based methods. Out of those,
parc-trees remain the best. The speed-up of LSH and parc-trees over the
other algorithms is especially visible for higher precision levels. For instance,
for 500k dataset KD-trees needs approximately 300µs to reach the precision
at second position equal to 0.85, whereas it takes parc-trees and Uniform
LSH less than 100µs and 50µs, respectively. As the dataset size grows, it
takes more time to find the nearest neighbors, but the relative ordering of the

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
re

c
is

io
n

 a
t

1

Time per query [us]

ANN search for 500k binary vectors (LDAHash)

KD-trees (16 trees)
HKM (branching 64)

PARC (branching 64)
Uniform LSH (16 bits)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
re

c
is

io
n

 a
t

2

Time per query [us]

ANN search for 500k binary vectors (LDAHash)

KD-trees (16 trees)
HKM (branching 64)

PARC (branching 64)
Uniform LSH (16 bits)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
re

c
is

io
n

 a
t

1

Time per query [us]

ANN search for 900k binary vectors (LDAHash)

KD-trees (16 trees)
HKM (branching 64)

PARC (branching 64)
Uniform LSH (16 bits)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
re

c
is

io
n

 a
t

2

Time per query [us]

ANN search for 900k binary vectors (LDAHash)

KD-trees (16 trees)
HKM (branching 64)

PARC (branching 64)
Uniform LSH (16 bits)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
re

c
is

io
n

 a
t

1

Time per query [us]

ANN search for 1.5M binary vectors (LDAHash)

KD-trees (16 trees)
HKM (branching 64)

PARC (branching 64)
Uniform LSH (16 bits)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

P
re

c
is

io
n

 a
t

2

Time per query [us]

ANN search for 1.5M binary vectors (LDAHash)

KD-trees (16 trees)
HKM (branching 64)

PARC (branching 64)
Uniform LSH (16 bits)

Figure 5: Comparison of precision for first and second positions for differ-
ent ANN search algorithms on 500k, 900k and 1.5M binary vector datasets.
Uniform LSH outperforms the parc-trees, which themselves outperform all
the other state-of-the-art methods for all configurations.

performances remains the same for all the methods: LSH performs the best,
followed by the parc-trees. For the 1.5M dataset, LSH achieves a precision
of 0.7 at first position about an order of magnitude faster than KD-trees and
HKM.

To verify our approach, we applied it to Aerial Triangulation. We ex-

14

Figure 6: Top: Two out of the 25 13824×7680 pixels images from the Mar-
seilles dataset. Bottom: Two out of the 68 11500×7500 pixels images from
the Zwolle dataset.

tracted feature points from aerial images, and match them using the same
binary descriptors as before. Matched points correspond to the same 3D
points, and we use these matches to jointly optimize the 3D points and the
camera parameters by bundle block adjustment [29].

We tested our binary search strategy on two datasets of large aerial im-
ages. The first dataset contains 25 high resolution (13824×7680) images of
Marseilles 2, two of which are shown in Fig. 6. The second dataset consists
of 68 11500×7500 aerial images of the Dutch city of Zwolle.

Each image contains approximately 400k binary keypoints which makes
exhaustive feature matching, even on binary vectors, excessively slow. Our
approach reduces the matching time by a factor 20 over linear search with a
95% accuracy, which is consistent with the results reported in Section 5. The

2From “Benchmarking of Image Matching Approaches for DSM computation”
http://eurosdrbenchmarkofimagematching.ign.fr/

15

Figure 7: Top left: The aerial triangulation of 1.1M 3D points and top

right: the generated ortho-image for the Marseilles dataset. Bottom left:

The aerial triangulation of 2.1M 3D points and bottom right: the ortho-
image made of 68 individual images (right) for the Zwolle dataset.

final aerial triangulations and the combined ortho-images for the Marseilles
and Zwolle datasets are shown in Fig. 7.

6. Conclusion

We showed that Voronoi diagrams in Hamming spaces have thick bor-
ders, which reduces the precision of state-of-the-art ANN algorithms. We
then proposed two techniques that rely on randomized data partitioning to
overcome this problem and yield precisions that are comparable to those
obtained using floating-point vectors at a fraction of the computational cost.

16

[1] K. Mikolajczyk, C. Schmid, A. Zisserman, Human Detection Based on a
Probabilistic Assembly of Robust Part Detectors, European Conference
on Computer Vision, 2004, 69–81.

[2] M. Brown, G. Hua, S. Winder, Discriminative Learning of Local Im-
age Descriptors, IEEE Transactions on Pattern Analysis and Machine
Intelligence 33 (1), 2011, 43–57.

[3] D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints,
International Journal of Computer Vision 20 (2), 2004, 91–110.

[4] H. Bay, T. Tuytelaars, L. Van Gool, SURF: Speeded Up Robust Fea-
tures, European Conference on Computer Vision, 2006.

[5] J. Beis, D. Lowe, Shape Indexing Using Approximate Nearest-Neighbour
Search in High-Dimensional Spaces, Conference on Computer Vision and
Pattern Recognition, 1997, 1000–1006.

[6] S. Arya, D. Mount, N. Netanyahu, R. Silverman, A. Wu, An Optimal
Algorithm for Approximate Nearest Neighbor Searching Fixed Dimen-
sions, Journal of the ACM 45, 1998, 891–923.

[7] C. Silpa-Anan, R. Hartley, Optimised kd-Trees for Fast Image Descriptor
Matching, Conference on Computer Vision and Pattern Recognition,
2008.

[8] K. Fukunaga, P. Narendra, A Branch and Bound Algorithm for Comput-
ing K-Nearest Neighbors, IEEE Transactions on Computing 24, 1975,
750–753.

[9] D. Nister, H. Stewenius, Scalable Recognition with a Vocabulary Tree,
Conference on Computer Vision and Pattern Recognition, 2006.

[10] T. Liu, A. Moore, A. Gray, K. Yang, An Investigation of Practical Ap-
proximate Nearest Neighbor Algorithm, Advances in Neural Information
Processing Systems, 2004.

[11] P. Yianilos, Data Structures and Algorithms for Nearest Neighbor
Search in General Metric Spaces, Fourth ACM-SIAM Symposium on
Discrete Algorithms, 1993.

17

[12] A. Andoni, P. Indyk, Near-Optimal Hashing Algorithms for Approx-
imate Nearest Neighbor in High Dimensions, Communications of the
ACM 51 (1), 2008, 117–122.

[13] G. Shakhnarovich, Learning Task-Specific Similarity, Ph.D. thesis, Mas-
sachusetts Institute of Technology, 2005.

[14] B. Kulis, T. Darrell, Learning to Hash with Binary Reconstructive
Embeddings, Advances in Neural Information Processing Systems,
2009,1042–1050.

[15] M. Raginsky, S. Lazebnik, Locality-Sensitive Binary Codes from Shift-
Invariant Kernels, Advances in Neural Information Processing Systems,
2009, 1509–1517.

[16] C. Strecha, A. Bronstein, M. Bronstein, P. Fua, LDAHash: Improved
Matching with Smaller Descriptors, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 34, 2012.

[17] Y. Gong, S. Lazebnik, Iterative Quantization: A Procrustean Approach
to Learning Binary Codes, Conference on Computer Vision and Pattern
Recognition, 2011.

[18] R. Salakhutdinov, G. Hinton, Semantic Hashing, International Journal
of Approximate Reasoning 50 (7), 2009, 969–978.

[19] Y. Weiss, A. Torralba, R. Fergus, Spectral Hashing, Advances in Neural
Information Processing Systems 21, 2009, 1753–1760.

[20] P. Indyk, R. Motwani, Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality, Proceedings of the 30th Symposium on
Theory of Computing, 1998, 604–613.

[21] A. Gionis, P. Indik, R. Motwani, Similarity Search in High Dimensions
via Hashing, International Conference on Very Large Databases, 1999.

[22] M. Calonder, V. Lepetit, C. Strecha, P. Fua, BRIEF: Binary Robust
Independent Elementary Features, European Conference on Computer
Vision, 2010.

18

[23] M. Miller, M. Rodriguez, I. Cox, Audio Fingerprinting: Nearest Neigh-
bor Search in High Dimensional Binary Spaces, Journal of VLSI Signal
Processing Systems 41 (3), 2005, 285–291.

[24] M. Muja, D. Lowe, Fast Approximate Nearest Neighbors with Auto-
matic Algorithm Configuration, International Conference on Computer
Vision, 2009.

[25] J. Friedman, J. Bentley, R. Finkel, An Algorithm for Finding Best
Matches in Logarithmic Expected Time, ACM Transactions on Mathe-
matical Software 3 (3), 1977, 209–226.

[26] Y. Amit, D. Geman, B. Jedynak, Efficient Focusing and Face Detection,
Face Recognition: From Theory to Applications, 1998, 143–158.

[27] S.-H. Cha, S. Srihari, Nearest Neighbor Search Using Additive Binary
Tree, Conference on Computer Vision and Pattern Recognition, 2000.

[28] M. Charikar, Similarity Estimation Techniques from Rounding Algo-
rithms, Proceedings of the thiry-fourth annual ACM symposium on The-
ory of computing, 2002, 380–388.

[29] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, 2000.

[30] J. Stirling, Methodus Differentialis [electronic Resource] : Sive Tractatus
De Summatione Et Interpolatione Serierum Infinitarum., J. Whiston
and B. White, 1764.

19

