
Fusing Online and Offline Information for Stable 3D Tracking in Real-Time�

Luca Vacchetti Vincent Lepetit Pascal Fua

Computer Vision Laboratory

Swiss Federal Institute of Technology (EPFL)

1015 Lausanne, Switzerland

Email: �Luca.Vacchetti, Vincent.Lepetit, Pascal.Fua�@epfl.ch

Abstract

We propose an efficient online real-time solution for single-

camera 3–D tracking of rigid objects that can handle large

camera displacements, drastic aspect changes, and partial

occlusions. While the offline camera registration problem

can be considered as essentially solved, robust online track-

ing remains an open issue because many real-time algo-

rithms described in the literature still lack robustness and

are prone to drift and jitter.

To solve these problems, we have developed a robust

approach to 3–D feature matching that can handle wide-

baseline matching: our method merges the information

from preceding frames in traditional recursive tracking

fashion with that provided by a very limited number of

keyframes created during an offline stage. This combina-

tion results in a system that does not suffer from the above

difficulties and can deal with drastic aspect changes. We

use Augmented Reality applications to demonstrate its be-

havior because they are particularly demanding in terms of

tracking performance.

1. Introduction

In this paper we propose an efficient online real-time solu-

tion for single-camera 3–D tracking that can handle large

camera displacements, extreme aspect changes and partial

occlusions. While the offline camera registration problem

can be considered as essentially solved, robust online track-

ing remains an open issue. Many of the real-time algorithms

described in the literature still lack robustness, tend to drift,

can lose a partially occluded target object, and are prone

to jitter that makes them unsuitable for applications such

as Augmented Reality. To compute the motion in a given

frame, we use a robust approach to 3–D feature match-

ing that can handle wide-baseline matching. Our method

merges the information from preceding frames in traditional

recursive tracking fashion with that provided by a very lim-

ited number of keyframes. This combination results in a

�This work was supported in part by the Swiss Federal Office for Edu-

cation and Science.

system that does not suffer from any the above difficulties

and can deal with complex aspect changes such as those

shown in Figure 1: We believe this result to be beyond the

current state-of-the-art.

Traditional frame-to-frame recursive approaches to

matching and those that rely on keyframes both have their

strengths and weaknesses. Keyframe-based techniques pre-

vent drift, but cannot provide good precision for every frame

without using a very large set of keyframes. Furthermore,

they typically introduce jitter. Techniques based on chained

transformations eliminate jitter but tend to drift and are sub-

ject to losing track altogether. To combine the strengths of

these approaches, we have therefore developed a robust 3–D

feature-matching technique that uses both preceding frames

and keyframes that may have been seen from relatively dif-

ferent viewpoints.

Our tracker starts with a small user-supplied set of

keyframes. The system then chooses the most appropriate

one using an aspect-based method and, if necessary, can au-

tomatically introduce new keyframes as it runs. It relies on

a 3–D model of the target object or objects, which, in prac-

tice, is not an issue since such models are also necessary for

many of the actual applications that require 3–D tracking.

Furthermore, they can be created using either automated

techniques or commercially available products. Unlike pre-

vious techniques that limit the range of object shapes that

can be handled, we impose no such constraint and put no

restriction on the object’s complexity.

We use Augmented Reality applications such as the one

depicted by Figure 1 to highlight the quality of our results

because they are particularly demanding in terms of track-

ing performance. In the remainder of the paper, we first

discuss related 3–D tracking work. We then introduce our

approach to 3–D feature tracking and to using keyframes.

Finally, we present our detailed results.

2. Related Work

While the real-time tracking is not yet a solved problem, our

understanding for offline camera registration from an image

sequence [1, 2, 3] has progressed to the point where com-

Figure 1: Tracking for augmented reality purposes. First and third rows: Video sequences with overlaid 3–D models whose

pose has been computed online using our method. Second and fourth rows: The 3–D models have been used to augment the

video sequences by adding glasses and a moustache to the subject and by adding a lever, slot-machine wheels and a jackpot

light to the old projector, thus turning it into a slot-machine.

mercial solutions are now available. By matching natural

features such as interest points between images these algo-

rithms obtain high accuracy even without a priori knowl-

edge. For example in [2] the authors consider the image

sequence hierarchically to derive robust correspondences

and to distribute error over the sequence. Speed not be-

ing a critical issue, these algorithms take advantage of time-

consuming but effective techniques such as bundle adjust-

ment.

Many other methods perform the same task for real-time

applications but tend to be less reliable since they can not

rely on batch computations. Those that work without a

priori knowledge are not really practical: for example [4]

assumes that no correspondences errors occur, and [5] as-

sumes that the camera center is moving to check if the cor-

respondences respect the epipolar constraint. Some popu-

lar methods[6] require fiducials for an accurate registration.

Model-based approaches such as [7], [8] are reliable and try

to compute a 3D pose that correctly re-projects the features

of a given 3D model into the 2D image. These features can

be edges, line segments, or points. To find the best fit, they

use least-squares minimization to find a local minimum in

an error function. Unfortunately the optimization procedure

may fall into wrong local minima in some particular cases.

This kind of approach can track an object with acceptable

accuracy, but its behaviour is unpredictable, in particular in

the presence of aspect changes or even when two edges of

the same object become very close to each other. Various

methods derive the camera position by concatenating trans-

formations between adjacent frames: for example [9] tracks

features in the case there is a plane in the scene, making use

of robust pose detection. [10] tracks natural features with no

model, considering as outliers all the regions and points that

do not have the same planar rigid motion. These methods

give good results over short sequences, the tracking is accu-

rate and there is no jitter because the points and/or regions

matching is done with respect to very close frames. Unfor-

tunately, for long sequences these methods suffer from the

error accumulation problem; they cannot deal with severe

aspect changes. Other methods [11] and [12] take into ac-

count reference frames. The first one uses a very limited

number of points for template matching and keeps track of

2

disappearing and appearing points. The second method uses

two reference keyframes for tracking the whole sequence.

In fact [11] states that the results need to be smoothed by

means of Kalman filtering. [12] also uses a Kalman filter

for jittering correction. They propose a solution for only

two offline keyframes but they do not tell how to extend

their method to many keyframes.

To compare these different approaches, we conducted

the following experiment. We used our feature matching

approach to track the projector in the sequence of Figure 1

three different times:

1. using only offline keyframe,
2. using only chained transformations,
3. combining both using our proposed method.

Figure 2 depicts the evolution of one of the camera center

coordinates with respect to the frame index and we have

verified that the behavior for all other camera parameters

is similar. In all three graphs, we superpose the output of

the tracker using one of the three methods mentioned above

with ”ground truth” obtained by manually calibrating the

camera every 5 frames.

The sequence made by using keyframes only of Fig. 2(a)

exhibits jitter while the recursive one of Fig. 2(b) is quickly

corrupted by error accumulation. The method presented in

this paper Fig. 2(c) keeps closer to the ground truth and

avoid drift.

3. Simple Recursive Tracking

In this section, we outline our approach to tracking the

camera-object displacement frame by frame. We assume

the algorithm is applied to a pair of arbitrary frames but we

do not yet make any assumption on how these frames are

chosen. This is the general form of 3D object tracking by

means of natural features and is summarized below.

3.1. Initialization

We use a calibration grid to compute intrinsic parameters

offline. The algorithm starts when the user moves the cam-

era or the object close to a known position that may be

shown on the screen. This does not need to be done pre-

cisely, an approximate position is sufficient. The matching

algorithm receives as input the incoming image and a “boot-

strap” reference frame; if the frames are close enough, the

point matching number increases above a given threshold

and the tracking starts.

3.2. Robust Pose Estimation Through Point

Matching

First, we detect the strongest interest points in the current

source image using the Harris corner detector [13]. Let the

interest points detected at the time � be:

�� � ���
� ����

�
� ��

Given a previous frame, let ���� be the set of 2D points

that we detected in it and ���� be the 3D position. Assum-

ing that ���� ℄ is known in the previous frame, but new parts

of the object may have appeared, we want to take into ac-

count the new 2D interest points. So we back-project them

in order to find their 3D coordinates ����, keeping only

the interest points that are on the object surface and dis-

carding all the others. To do so, we first use a “Facet-ID”

image to detect on which face of the 3D model each 2D

point lies. That image is generated by encoding the index �
of each facet �� as a unique color, and projecting the whole

model into the image plane, using a standard OpenGL ren-

dering. Once the facet-ID is known we can use the efficient

algorithm presented in [14] to find the intersection with the

found facet and the line passing through the camera centre

of projection and the 2D point in the image plane. Being

the 3D position ���� in that frame known:

���� � ���
�������

�
����

���� � ���
�������

�
����	

such that:

��
��� �
����������℄�

�
����

where ���� and ���� and ����, the camera rotation and

translation estimated for the previous frame, are expressed

in the object coordinate system.
 is the internal parameters

matrix. We are looking for the �� and �� matrices for the

current frame. We match the 2D points between � ��� and

��, choosing for each point in the set ���� the one in the

set �� that maximizes a correlation measure that is insensi-

tive to illumination changes [15]. As a result, some of the

current image points �� are matched to the previous image

points ����:

��
� � ��

����

Since � �
��� must re-project on ��

� we should have:

������℄�
�
��� � ��

� �

Therefore also the 3D points belonging to � �
� can be asso-

ciated to the 3D points of � �
���, giving in this way the 3D

coordinates of the unknown points:

� �
� � � �

����

The 3D points are the same for both the images if the 2D

points have been correctly matched. Once all the 2D-3D

correspondences are done, we have enough information to

compute the camera position in the object reference system.

This is done using the algorithm proposed in [16] and the

robust estimator RANSAC to discard outlier matches [15].

3

a.

 1260

 1280

 1300

 1320

 1340

 1360

 90 100 110 120 130 140 150

Ground truth
Keyframes only

b.

 1260

 1280

 1300

 1320

 1340

 1360

 90 100 110 120 130 140 150

Ground truth
Recursive method

c.

 1260

 1280

 1300

 1320

 1340

 1360

 90 100 110 120 130 140 150

Ground truth
Our method

Figure 2: Plots showing a sequence tracked using three different methods. The dots represent the ground truth. The first

plot shows the low precision and jittering resulting from using only offline keyframes, the second one highlights the error

accumulation of the recursive method. The third plot corresponds to our method.

2

2

2

3

3

2

Scene

o

1

1

3

Konline

online

online

K2

K1

K4

4

4

4

1

K3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Scene

C
K1

K2

Figure 3: Online and Offline Keyframes. a) Tracked cam-

era displacement with four offline keyframes and one online

keyframe. The dotted arrows represent the camera displace-

ment from one frame to the next, and the number shows

which keyframe is being used. K1 to K4 are the camera

positions of the offline keyframes. When the current cam-

era position gets too far from any known offline keyframe,

a new online keyframe denoted Konline is generated. b)

Choosing the best keyframe between�� and ��. � is the

previous camera position.

4. Keyframe Based Tracking

In short, the simple method presented in the previous part

works with very good precision without jittering. However,

the simple recursive approach is too weak from the point

of view of error accumulation, and it is not suitable for a

real-time environment. Thus, one must improve the method

with some additional information. This can be done using

some a priori knowledge, supplied by the keyframes. The

following section explains how to use the keyframes in or-

der to track any sequence with no drift and no limits on the

camera position.

In this section, we explain how to build the keyframe of-

fline set, how to track by matching the reference keyframes,

and which criterion we use to choose the best keyframe for

the match. During the training stage the user creates offline

keyframes, and in the tracking stage the previous informa-

tion is used to track. During the tracking the camera may

move too far away from any known keyframe: In that case

a new “online” keyframe is added to the others and it will

be re-used when the camera position again passes close to

it.

4.1 Creating Keyframes

During the offline stage, the user is asked to choose a set of

images representing the scene from many different points

of view or, at least, the positions that the camera will prob-

ably reach. Usually it is enough to take few pictures all

around the object. While tracking the sequences presented

in this paper we only used 14 keyframes because our object

is rather big and we can only walk around it; for the head

we used only one keyframe. Afterwards the user is asked

to accurately calculate the ���� ℄ for every key frame he

choosed. There are many methods to calculate the ���� ℄. In

our early test stage we were using a simple Posit implemen-

tation: it is enough to get the 2D position of 3 known points

in every image to calculate the object pose. The user can

even make use of commercial post-production tools, such

as the ones of RealViz���� or 2D3����. The commercial

products can retrieve the object position over the whole se-

quence with good accuracy, since they work offline. When

���� ℄ is known for every keyframe, the user has completed

the offline stage. Then the system performs interest point

detection and back-projects the points that lie on the object

surface. In short, building a keyframe means collecting the

following data for each frame: The deinterlaced bitmap im-

age of the scene, the two sets� and� of 2D and 3D points,

the corresponding surface normals
�, which will be used for

wide baseline matching, � and � , and some additional in-

formation for the visibility criterion.

4.2. Visibility Criterion for Keyframe Choice

The first step is to choose the best keyframe. This choice is a

critical task on which the quality of the matching depends.

The keyframe’s aspect must be as close as possible to the

4

current frame. As shown in Figure 3b, simply evaluating the

camera position is not enough. The point C represents the

current camera position, and K1 and K2 are two keyframes.

Just taking the keyframe that minimizes the euclidian dis-

tance means that the closest keyframe is K1. However its

aspect is not as close as K2, which is further away but has a

closer line of sight. To correct this problem, we should eval-

uate the angle between the two lines of sight. However, this

is still not a complete method, because it does not take into

account object non convexities and self occlusions. Instead,

we use an appearance-based method. We use the following

criteria:
�

�����	
�

�Area��	
� ��� ��� ℄�� Area��	

 ��
 ��
 ℄��� 	

where Area��	 � � is the 2D area of the facet � after projec-

tion by � . We reuse the method we introduced in Subsec-

tion 3.2 for an accelerated OpenGL rendering of the object

model. Every facet is rendered in a different color, repre-

senting the facet index, using the camera R and T estimated

for the previous frame. We histogram this image and com-

pare the result to the keyframe histograms, which have been

created offline during the learning stage. We get the contri-

bution of the area of every single facet in the model as it

is reprojected in the 2D image. Every histogram bar rep-

resents the number of occurrences of every facet’s pixels.

This method has constant complexity, and requires only a

single read of the image. In Figure 5 we show the rendered

images and the correspondent histograms respectively for

C, K2 and K1, the camera positions given in Figure 3.b.

4.3 Wide Baseline Matching

This section presents our method to handle the perspec-

tive distortion on the correlation window. Conventional

methods make use of a square bi-dimensional correlation

window. This technique gives good points matching un-

der the assumption of very small perspective distortion be-

tween two frames. However, to effectively use keyframes,

the ability to match distant frames becomes essential. Con-

sequently we specify a point matching algorithm between

a square 2D window in the current frame and a perspec-

tive distorted window in the keyframe image, that we call

the “re-rendered” image. We skew the 30�30 pixel patches

around each interest point from the keyframe image in or-

der to bring them to a position close to the current one. Each

patch in the keyframe is related to the corresponding image

points in the “re-rendered image” by a planar homography.

Given the patch corresponding plane � having coordinates

� � �
�� 	 ��� so that for points on the plane ��� 	 � �
,

the general expression for the homography induced by the

plane is (according to [15]):

� �
��� � ��
�� ���
��

Figure 4: From the left: The keyframe, the current frame,

the re-rendered key frame with respect to the previous cam-

era position estimate.

for two views defined by their projection matrices � �

�� �
℄ and � � �
�����℄. The homography equation for

the general case can easily be obtained by changing the ref-

erence system. We get:

� �

�Æ�� Æ��
��
�
����
�

��

with

Æ� � ���
�

 � Æ� � ����

�

�
 	 �� �

�� � �

�� �
� � �� ��� ��

���

where

 ��
 ��
 ℄ and
� ��� ��� ℄ are the projection ma-

trices of the key frame and the previous frame.

The resulting image is a re-rendering of the interest

points’ neighbourhood in a more convenient position as

shown in Figure 4. This method allows us to effectively

match views even where there is as much as 60 degrees of

rotation. An alternative solution to the homography would

have been to re-render a 3D representation of the object us-

ing an OpenGL textured 3D object, but we choose the other

way to have a more precise result around the points.

4.4. Combining Online and Offline Informa-

tion for Jittering Correction

There is a trade-off between accurate tracking with no

jittering and a robust tracking with no drift. Tracking

with respect to previous frames offers better precision than

keyframes but involves error accumulation. Tracking with

the keyframes is less precise because usually fewer points

are matched, giving a poor precision as we have seen. This

is due to the distance between the two frames we are trying

to match.

In our approach we therefore attempt to combine the

strengths of both the online and offline information as fol-

lows: first, we match the current frame with the chosen

keyframe and apply RANSAC to the set of points we found,

discarding the outliers and retaining a set of points �

free from error accumulation. Then, we perform a modi-

fied RANSAC estimation over the matches between the cur-

rent frame with the previous one: if an ��	 � ℄ sample tested

by the RANSAC estimator rejects some points in �
 , this

sample is not considered by this second stage. This way,

5

this stage estimates the values ��	 � ℄ using all the points in

�
 , which provide reliable but partial information, and the

matches between the previous and the current frames that

provide additional information.

As we will show in the results section, this technique

eliminates jitter without requiring predictive techniques

such as Kalman filtering that are not particularly suitable

for Augmented Reality.

4.5 Offline and Online Keyframes

Assuming we already have a consistent set of keyframes,

we show in this subsection how to employ them to track a

sequence. As shown in Figure 3a, while the camera moves

around the scene, the system switches from one keyframe

to the other, always choosing the one that is is closest to the

images currently being seen. When the current camera po-

sition gets too far from any known offline keyframe, a new

online keyframe denoted Konline is generated. It will be

added to the keyframe set and treated like the other ones.

The criterion we use for deciding to generate an online

keyframe is a test on the matched point number and the ro-

bust pose discarded points number. As it is always based on

previous frames, this method might potentially suffer from

the same drift problem as the recursive method. However,

the drift is not a problem in this case. We accumulate error

only when we create an online keyframe, since we calculate

a new 3D position based on the ���� ℄ that we computed

and not from the real one. However, this error accumulation

does not occur at every frame because the newly generated

keyframe can be reused for tracking many frames. For ex-

ample, in our sequences an online keyframe can be used for

tracking 40 or 50 consecutive frames. Moreover, after some

time the camera will again pass close to a known position,

re-using the keyframes that have been generated online. An

interesting characteristic of this method is that when some

error has been accumulated over a part of the sequence, it

will be reset to zero when an offline frame is used. The on-

line frames can be considered as a kind of “second chance”

method used to recover when there are no offline keyframes,

and it has only to guarantee no complete divergence before

the camera gets close to an offline frame.

5. Experiments and Results

The non optimized version of the tracker runs at near real-

time, at about 4 frames per second using a conventional ma-

chine for 720�568 images and about 15 frames per second

for 320�200 images. Since, for many critical geometric

computations, we used general methods based on openGL

rendering, our method can work with difficult objects at the

same speed as simple ones. The speed depends only on the

number of interest points lying on the object, which can be

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Figure 5: Different aspects for the camera positions C, K2

and K1 in Figure 3.c, and their respective histograms.

Figure 6: Some keyframes for the projector sequences.

decreased or increased simply by changing the corner de-

tection threshold. The tracked object can assume any po-

sition with respect to the camera. For instance, there is no

problem if the camera is inside the object to be tracked, and

we can handle compound objects, or self-occluding parts of

the scene, as long as they do not move with respect to each

other. We set up a variety of demonstrations, to show that

this method can be used for many different categories of

objects. In the example depicted by Figure 1d, the camera

is moving around an old video projector doing a complex

movement with 180 degree rotations. In a second video se-

quence the scene is partially occluded by a human operator,

in order to roughly simulate the behaviour of a camera on

a Head Mounted Display (see figure 8). Not all the videos

are attached to the paper, for example a 360 degree cam-

era displacement around the projector is omitted (see Fig-

ure 9). We use the same 14 offline keyframes for all the

sequences. Some of them are shown in Figure 6. Compared

to some of the online sequences, they have different light

conditions and the camera was farther from the projector. In

the MPEG video corresponding to the Figure 1d for every

frame are shown the current keyframe used for tracking and

its re-rendering (in the top right corner). Some keyframes

are online and some are offline. The model was created by a

designer using Maya, and it took 4 hours of work. There is

a small mistake in the model: the position of one of the two

cylinders on the front face is not very accurate, however it

does not corrupt the result, though some points are refused

by the robust pose estimation.

In the second example depicted by Figure 1, we track a

6

1

Copt

a

aScene

0P P

�
�
�

�
�
�

Scene

0
PP

Copt
�
�
�

�
�
�

1

Figure 7: The reprojection error when a face of the model is

almost parallel to the line of sight (left) and in the opposite

case.

head that is rotating completely. The model has been recon-

structed offline from another short video sequence. Even

though we only have the face model and not the whole head,

have been able to track 180 degree rotations . We ran our

tracker on this sequence giving only one offline key frame.

Figure 1 shows some frames with the face model super-

posed, and the last ones do not show the model but some

virtual objects have been added. Since the occlusions are

evaluated by means of the same face model (missing ears

and the back of the head), not all the occlusions are per-

fect. We believe that the head can be tracked by means of

much less accurate models, as in [17], however our inten-

tion is to demonstrate that we can deal with complex ob-

jects. All the video sequences are available at the address:

http://cvlab.epfl.ch/�vacchetti/research.html

6. Discussion

In this section we discuss the problems arising when the

tracked objects go through aspect changes and we illustrate

how we correct the drift. If there are only partial aspect

changes, and the points are regularly distributed over the

tracked object, the errors may not be accumulated quickly,

and may even cancel each other when moving in opposite

directions. In this way long sequences of over one thousand

frames may be successfully tracked without encountering

much drift. In Figure 7 we analyze a camera rotating around

the scene. We evaluate a small error in the pixel space, e.g.

say that the point �� is assumed to be in the position �� in

the left part of the image. If these pixels represent a face

that is almost parallel to the line of sight, the error � in the

3D position of the point is very large. If the object does not

change its aspect, we are still in a safe state, but if the cam-

era turns and the side is facing the camera (Figure 7b), the

re-projection of 3D position error will be much bigger than

its previous reprojection. If at this point we do ray casting

— for adding new incoming points to our set — many back-

ground points are considered as lying on the object and the

tracking will be corrupted, since the robust pose is fooled by

this wrong information. Our experiments show that, with-

out drift correction, the tracking may fail after less than 180

degree rotation, that may roughly correspond to 100 frames

in our sequences, which is much faster than when there is

only simple camera displacement.

7. Conclusion

In this paper we presented a robust and jitter-free tracker

that combines natural feature matching and the use of

keyframes to handle any kind of camera displacement us-

ing real-time techniques. We use the model information to

track every aspect of the target object, and to keep following

it even when it is occluded or only partially visible, or when

the camera turns around it. A set of keyframes is created

off-line and, if there are too few of them, new keyframes

can be automatically added online. We exploit offline and

online information to prevent the typical jittering and drift

problems. The matching algorithm is designed to match

frames having very different aspects and in the presence of

rotations of up to 60 degrees. We choose the most appropri-

ate keyframe using aspect-based techniques and we exploit

hardware accelerated functions to implement many critical

parts. We can use our tracker for a large set of objects, with

no constraints on the kind of camera motion.

Our plans for future work include offline bundle adjust-

ment after the end of tracking in order to achieve perfect

registration of the online keyframes, automatically creating

new offline keyframes. Further development will be done

to incrementally extend our scene model during tracking,

exploiting the camera displacement information to retrieve

additional points following the same rigid motion of the

model. In this way every time the program runs it improves

its performance.

References

[1] C. Tomasi and T. Kanade, “Shape and Motion from Image

Streams under Orthography: A Factorization Method,” In-

ternational Journal of Computer Vision, vol. 9, no. 2, pp.

137–154, 1992.

[2] A.W. Fitzgibbon and A. Zisserman, “Automatic Camera Re-

covery for Closed or Open Image Sequences,” in European

Conference on Computer Vision, Freiburg, Germany, June

1998, pp. 311–326.

[3] M. Pollefeys, R. Koch, and L. Van Gool, “Self Calibration

and Metric Reconstruction in Spite of Varying and Unknown

Camera Parameters,” in ICCV, 1998, pp. 90–96.

[4] A. Azarbayejani and A. P. Pentland, “Recursive Estimation

of Motion, Structure and Focal Length,” IEEE Transactions

7

Figure 8: Video sequence with occlusions.

on Pattern Analysis and Machine Intelligence, vol. 17, no. 6,

pp. 562–575, 1995.

[5] P. A. Beardsley, A. Zisserman, and D. W. Murray, “Sequen-

tial update of projective and affine structure from motion,”

International Journal of Computer Vision, vol. 23, no. 3, pp.

235–259, 1997.

[6] K. N. Kutulakos and J. R. Vallino, “Calibration-free aug-

mented reality,” IEEE Transactions on Visualization and

Computer Graphics, vol. 4, no. 1, pp. 1–20, /1998.

[7] T. Drummond and R. Cipolla, “Real-time tracking of mul-

tiple articulated structures in multiple views,” in ECCV (2),

2000, pp. 20–36.

[8] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau,

“Robust real-time Visual Tracking Using a 2D-3D Model-

Based Approach,” in International Conference on Computer

Vision, Corfu, Greece, September 1999, pp. 262–268.

[9] G. Simon, A. Fitzgibbon, and A. Zisserman, “Markerless

tracking using planar structures in the scene,” in Proc. Inter-

national Symposium on Augmented Reality, October 2000,

pp. 120–128.

[10] U. Neumann and S. You, “Natural feature tracking for aug-

mented reality,” IEEE Transactions on Multimedia, vol. 1,

no. 1, pp. 53–64, 1999.

[11] S. Ravela, B. Draper, J. Lim, and R. Weiss, “Adaptive track-

ing and model registration across distinct aspects,” in IEEE

International Conference on Intelligent Robots and Systems

(IROS), 1995, pp. 174–180.

[12] K.W. Chia, A.D. Cheok, and S.J.D. Prince, “Online 6 dof

augmented reality registration from natural features,” in

Proc. International Symposium on Mixed and Augmented

Reality, 2002.

[13] C.G. Harris and M.J. Stephens, “A combined corner and

edge detector,” in Fourth Alvey Vision Conference, Manch-

ester, 1988.

[14] T. Moeller and B. Trumbore, “Fast, minimum storage ray-

triangle intersection,” in Journal of graphics tools, 2(1):21-

28, 1997.

[15] R. Hartley and A. Zisserman, Multiple View Geometry in

Computer Vision, Cambridge University Press, 2000.

[16] D. DeMenthon and L. S. Davis, “Model-based object pose

in 25 lines of code,” in European Conference on Computer

Vision, 1992, pp. 335–343.

[17] M. Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head

tracking under varying illumination: An approach based on

registration of texture-mapped 3d models,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 22,

no. 4, April 2000.

Figure 9: Video sequence in which the camera is rotating

around the object doing a 360 degree loop.

8

