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Abstract

We propose an efficient method for estimating the motion

of a multi-camera rig from a minimal set of feature corre-

spondences. Existing methods for solving the multi-camera

relative pose problem require extra correspondences, are

slow to compute, and/or produce a multitude of solutions.

Our solution uses a first-order approximation to relative

pose in order to simplify the problem and produce an ac-

curate estimate quickly. The solver is applicable to sequen-

tial multi-camera motion estimation and is fast enough for

real-time implementation in a random sampling framework.

Our experiments show that our approach is both stable and

efficient on challenging test sequences.

1. Introduction

A fundamental problem in computer vision is comput-

ing the motion of a camera, or multi-camera rig, from the

observed movement of points in successive images. The

camera motion between two image captures is called the

relative pose. While the single-camera relative pose prob-

lem has been extensively investigated in prior work, the

multi-camera case has been given attention only recently.

However, multi-camera motion estimation is a critical tech-

nology for many emerging applications such as self-driving

cars with vehicle-mounted cameras and aerial vehicles such

as quadcopters.

Existing solutions to the multi-camera relative pose

problem [30, 15, 20] have deficiencies such as slow compu-

tation, producing a huge number of solutions, or using extra

correspondences above the minimal six. In order to deal

with feature mismatches, any relative pose solution needs

to be applied repeatedly in a random sampling loop such as

RANSAC [8]. This motivates the need for a solution that

is fast and uses the minimal number of correspondences in

order to reduce the number of samples required.

In this work, we derive a novel solution to the gener-

alized camera relative pose problem which is faster than

existing solutions while maintaining similar accuracy. The

Figure 1. Illustration of moving multi-camera rigs. The black

points and dashed lines indicate corresponding observations of a

feature in the two capture instances. Left: A general multi-camera

configuration with four cameras. Right: An axial camera configu-

ration with two cameras (a stereo camera).

insight in our work comes from applying a first-order ap-

proximation to relative pose, which simplifies the problem

and leads to an efficient solution. Our method is intended to

be applied to successive video frames from a moving multi-

camera rig. This allows us to assume small camera mo-

tion between frames, which makes the approximated mo-

tion model an appropriate choice.

Applying the approximated motion model to the prob-

lem leads to a simplified system of polynomials which can

be solved in a specialized and efficient way. Because our

solution is both computationally efficient and accurate, it

would be very useful for motion estimation on resource-

constrained platforms such as unmanned aerial vehicles,

small drones, mobile robots, and handheld devices.

2. Related Work

Stewénius et al. introduced a minimal solution for the

generalized epipolar constraint [30]; however, this method

produces up to 64 solutions and is too computationally com-

plex to be considered for a real-time implementation. The

linear solution of Li et al. [20] uses seventeen points and,

while fast, it is sensitive to noise and requires a huge num-

ber of RANSAC iterations because of the sample size.

Specialized solutions to the generalized relative pose

problem have been investigated previously, such as using

point triangulation [4] or initial motion estimation from a
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single camera [3, 12]. Other authors have investigated the

application of special-case motion models to the general-

ized epipolar constraint [17, 18] or assumptions on the cam-

era overlap [4, 7]. Kim et al. [13] approximate the geometry

of the multi-camera rig by treating it as a spherical camera

with a common optical center. This leads to a simplified

solution but loses the advantages of using multiple cameras

together for relative pose estimation, i.e. a correctly scaled

translation magnitude and no instability with small transla-

tion.

Kneip and Li introduced an iterative solution for gener-

alized camera relative pose based on eigenvalue minimiza-

tion [15]. They require seven or more correspondences

in order to ensure convergence to a single solution. This

method is much faster than previous general-case methods,

but does require extra correspondences and is also suscepti-

ble to falling into local minima.

The first-order approximation to relative pose was previ-

ously applied to the single-camera relative pose problem to

derive an efficient solver for either the translation [29] or ro-

tation [33] independently. Clipp et al. applied a first-order

approximation to stereo camera motion estimation assum-

ing a single triangulated point [4]. The first-order rotation

matrix assumes that the rotation is small between images,

but does not enforce any other motion constraints, such as

vehicle motion [17], planar motion [27] or rotation about a

single axis [18], as previous solutions have done. Using the

first-order approximation to relative pose, as we do in this

paper, allows us to achieve an efficient solver for general

multi-camera motion estimation.

Mathematical Notation We use a bold lower-case letter

(a) to represent a column vector, a sans-serif upper-case let-

ter (A) to represent a matrix, and an italic lower-case letter

(a) for a scalar. We use [a]× to denote the skew-symmetric

matrix such that [a]×b = a × b for all b. We use a sub-

script to give the dimensions of a matrix when necessary,

e.g. A3×3 for a 3× 3 matrix.

3. Problem Description

The multi-camera case is illustrated in Figure 1. The ge-

ometry of image observations from a moving multi-camera

rig can be expressed in a manner similar to the single-view

case. A multi-camera rig can be represented as a general-

ized camera, where image observations are represented by

3D rays, not necessarily emanating from the same camera

center. The 3D rays are parameterized as six-dimensional

vectors in Plücker coordinates. For a generalized camera

model, the epipolar constraint is replaced with the general-

ized epipolar constraint [24]:

v
⊤

i

(

−[t]×R R

R 03×3

)

ui = 0 (1)

Here, ui and vi are corresponding rays in the previous

and current frames, respectively, R is the rotation between

frames and t is the translation. In this case, six observations

are required for a minimal solution.

Here we apply the first-order approximation to the rota-

tion matrix R, parameterized by a 3-vector r = [x y z]⊤:

R ≈ I3×3 + [r]× (2)

The approximated generalized epipolar constraint can

now be re-arranged to isolate the rotation and translation

parameters, as Kneip and Li did for the un-approximated

case [15]. After stacking all six correspondences, we arrive

at an equation system

M(r)

[

t

1

]

= 0 (3)

where M(r) is a 6×4 matrix of linear expressions in x, y, z.

Since M(r) has a null vector, it must be of rank at most

three. Hence, all the 4 × 4 sub-determinants of M(r) must

equal zero. This gives
(

6

4

)

= 15 equations which only in-

volve the rotation parameters. These fifteen equations can

be written in matrix form by separating the coefficients into

a 15×35 matrix A and the terms into a vector of monomials

m:

Am = 0. (4)

3.1. Solution Procedure

In the following we derive two different solutions to the

system of equations described in Equation 4.

3.1.1 Solution using Gröbner basis method

Kukelova et al. [16] described a general, automatic pro-

cedure for producing a solver for a system of multivari-

ate polynomial equations using the Gröbner basis method1.

This procedure iteratively adds polynomials to the system

until it can be reduced to a Gröbner basis.

In our particular case, however, we found that no extra

polynomials need to be added. Using Macaulay2 [11], we

determined that the system has at most twenty solutions.

By ordering the monomials in m using graded reverse lex-

icographic ordering and running Gaussian elimination on

A, we immediately arrive at a Gröbner basis for the ideal

I generated by the fifteen polynomial equations, since this

leaves only twenty monomials that are not divisible by any

of the leading monomials in the equations. These monomi-

als form a basis for the quotient ring C[x, y, z]/I and are

the same basis monomials reported by Macaulay2. Similar

reasoning was used by Stewénius et al. [28].

1See the textbooks of Cox, Little and O’Shea [6, 5] for an introduction

to Gröbner basis methods and the work of Stewénius [26] and Byröd et

al. [2] for an explanation of the use of Gröbner basis methods for minimal

problems in computer vision.
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Once we have the Gröbner basis, we can extract a 20×20
“action matrix” A′ for variable z, so that

A
′
v = zv (5)

where v contains the twenty basis monomials from m, the

last terms of which being x, y, z, 1.

Now we can use eigenvalue decomposition to find the

twenty eigenvalues and eigenvectors of the action matrix.

The eigenvalues will be solutions for z and corresponding

solutions for x and y are given in the eigenvectors. This

procedure is similar to solutions to the single-camera rel-

ative pose problem for both the un-approximated [28] and

approximated case [29, 33].

3.1.2 Solution by reduction to single polynomial

We note here that if we “hide” variable z, the expression

Am = 0 can be re-written as

C(z)m′ = 0 (6)

where C(z) is a 15× 15 matrix of polynomials in z and m
′

contains monomials in x and y. Now we can use the fact

that

det(C(z)) = 0 (7)

to arrive at a single twentieth-degree polynomial in z.

This is called the hidden variable resultant method,

which has been applied previously to minimal problems in

computer vision, including the single-camera relative pose

problem [19]. However, computing the 15×15 determinant

is slow in practice, and thus the hidden variable resultant

method does not lead to a fast solver here.

An alternative approach that works in general is to trans-

fer the eigenvalue problem given in Equation 5 to a polyno-

mial problem whose roots are the eigenvalues of the original

problem (i.e. find the characteristic polynomial of A′). Bu-

jnak et al. [1] considered several different general methods

for this procedure.

In our particular case, however, we can directly derive

a single polynomial from the original system of equations

given in Equation 4. Because we derive the solution ana-

lytically, rather than numerically as proposed by Bujnak et

al. [1], the derivation of the polynomial is closed-form and

thus leads to a faster solver.

We use a special monomial ordering to reduce the prob-

lem to a single polynomial in z. Our procedure was inspired

by Nistér’s solution to the single-camera relative pose prob-

lem [22].

The particular monomial ordering we use is as follows:

m
′′ = [x4, x3y, x2y2, xy3, y4,

x3z, x3, x2yz, x2y, xy2z, xy2, y3z, y3, z4, z3,

x2z2, x2z, x2, xyz2, xyz, xy, y2z2, y2z, y2,

xz3, xz2, xz, x, yz3, yz2, yz, y, z2, z, 1]⊤

We then arrive at a matrix equation Gm′′ = 0 where G is

matrix A after re-ordering and Gaussian elimination. This

gives fifteen equations denoted as 〈g1〉 . . . 〈g15〉.
We remove higher-order terms in x and y from these

equations by elimination:

〈b1〉 ≡ 〈g6〉 − z〈g7〉 (8)

〈b2〉 ≡ 〈g8〉 − z〈g9〉 (9)

〈b3〉 ≡ 〈g10〉 − z〈g11〉 (10)

〈b4〉 ≡ 〈g12〉 − z〈g13〉 (11)

〈b5〉 ≡ 〈g14〉 (12)

〈b6〉 ≡ 〈g15〉 (13)

and thus reduce the system to six equations 〈b1〉, . . . , 〈b6〉
which can be re-written as a matrix equation:

B(z)

















x2

xy
y2

x
y
1

















= 0 (14)

where B(z) is a 6 × 6 matrix of polynomials in z. Now,

as with the hidden variable resultant method before, we can

find a single twentieth-degree polynomial in z:

〈n〉 ≡ det(B(z)) = 0. (15)

Because this involves a smaller 6 × 6 determinant, it

is much less costly to compute this determinant than the

15 × 15 determinant derived earlier. Once solutions for z
are found by root-finding, the corresponding solutions for x
and y are found by substituting the solution for z into B and

computing the null vector.

To find the roots of z, we could find eigenvalues of the

companion matrix of 〈n〉. However, using the eigenvalue

decomposition would deprive this solution procedure of any

computational advantage over the Gröbner basis method de-

scribed earlier. Instead, we use numerical root-finding using

Sturm sequences to bracket the roots. This root-finding pro-

cedure is much faster than eigenvalue decomposition of the

companion matrix. Because our solver is intended for small

motions, we bound the roots to −15 to 15 degrees.

3.2. Solution for Axial Camera Configuration

As illustrated in Figure 1, the case where all camera op-

tical centers lie on a line is called an axial camera configu-

ration [31]. If the camera baseline is in the X direction, this

makes the fourth Plücker coordinate zero for all rays.

By assuming that the fourth coordinate of all rays is zero,

we can simplify computation of the A matrix. However,

the remaining sections of either solution procedure remains
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the same, meaning that we can still find a Gröbner basis or

reduce to a single twentieth-degree polynomial in the same

manner.

This means that the axial camera configuration is not a

special degenerate case for our method, and we do not need

to derive a new formulation of the generalized epipolar con-

straint for the axial camera case, as has been previously in-

vestigated [32]. Instead, we can simply replace the code for

computation of the A matrix and keep all other parts of the

code the same.

3.3. Translation Observability

It is important to differentiate intra-camera observations,

which arise from movement of points in the same cam-

era, from inter-camera observations, which arise from cor-

respondence between different cameras.

It is well-known [17, 15] that with only intra-camera cor-

respondences and zero-magnitude rotation, the translation

of the multi-camera rig becomes unobservable. This is a

point of degeneracy and thus, in the case of near-zero ro-

tations and only intra-camera correspondences, the transla-

tion estimation will be unstable.

However, in our evaluation (Section 4), we did not notice

any instability in the rotation estimation produced by our

solvers in cases of near-zero translation, while the method

of Kneip and Li [15] did exhibit higher error with small ro-

tations. The stability of our method may be due to the first-

order approximation, which reduces the amount of compu-

tation and thus reduces the chance for propagation of nu-

merical instability.

4. Evaluation

We compared our solvers with state-of-the-art methods

in terms of both computation time and accuracy on synthetic

and real datasets. We refer to the solutions tested with the

following abbreviations:

• GB: Our solution to the generalized camera relative

pose problem using a Gröbner basis.

• Poly: Our solution to the generalized camera relative

pose problem using reduction to a single polynomial

and root-finding using Sturm sequences.

• Kneip: The solution of Kneip and Li to the generalized

camera relative pose problem using eigenvalue mini-

mization [15].

• Stewénius: The solution of Stewénius et al. to the

generalized camera relative pose problem using a

Gröbner basis [30].

• Linear 17 pt.: The solution of Li et al. to the gener-

alized camera relative pose problem using linear least

squares [20].
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Figure 2. Comparison of computation time and rotational accuracy

using synthetic data. We ran multiple tests, varying the amount of

rotation between 0 and 5 degrees. Each dot represents one rotation

setting. Gaussian noise was added to the observations with one

pixel standard deviation. Our Poly algorithm is the fastest. Both

our GB and Poly algorithms are competitive with state of the art

in accuracy for small rotations.

All code was implemented in C++ and tested on a 2.6

GHz Intel Core i5 with 16 GB RAM. The MATLAB sym-

bolic toolbox was used to produce optimized C++ code for

our solvers. We also used templated C++ code for math op-

erations and for polynomial manipulation. Using templated

C++ allows the compiler to better optimize the code and

avoids dynamic memory allocation. The implementations

of Kneip, Stewénius and Linear 17 pt. were provided in

the OpenGV library [14].

4.1. Timings

We tested each solver on 10000 randomly generated

problems to compute the average computation times shown

in Table 1. Poly is the fastest, while the GB method is

slightly faster than Kneip. Stewénius is by far the slow-

est method.

Method Time (µs)

GB (ours) 156

Poly (ours) 64

Kneip 171

Stewénius 7891

Linear 17 pt. 94

Table 1. Average computation time for various solvers.

Modifying our GB and Poly methods for the axial cam-

era case leads to an improvement of about five microsec-

onds for both methods.

4.2. Synthetic Data

To test the accuracy of our solutions in comparison to

state-of-the-art solvers, we evaluated them on randomly

generated problems. We tested a range of camera rota-

tion magnitudes in order to examine the performance of our

methods with increasing amounts of rotation. Because of

the first-order approximation, our solvers will not be as ac-

curate with higher amounts of camera rotation. We tested
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Figure 3. Comparison of our solvers with previously proposed algorithms tested on synthetic data using random generalized camera

configurations. No noise was added to the observations.

the zero-noise case on synthetic data in order to evaluate

performance of each method with ideal measurements, as

is standard practice when evaluating minimal solver algo-

rithms [22, 28]. We also tested the algorithms with noise

added to the observations (discussed below), and on real

image sequences (Section 4.3).

While details of our testing procedure will be explained

in the following, Figure 2 shows a summary comparison all

methods. Here, the ground truth rotation ranged in magni-

tude from zero to five degrees and Gaussian noise of one

pixel standard deviation added to the observations. These

conditions were chosen to reflect real-world conditions.

The plot shows that Poly method is the fastest of all meth-

ods while also being close in accuracy to Stewénius under

these conditions.

In our tests, random problems were generated in the fol-

lowing manner. For each problem, a random rotation of

the specified rotation magnitude is generated, as well as a

random unit translation. Camera centers are randomly gen-

erated in the box [−1 1]× [−1 1]× [−1 1]. For each camera

center, a 3D point is randomly selected on the unit sphere,

and then randomly scaled by a scale factor in the range [4 8].
The ray between the camera center and the point is then

added as an observation ray at the first time frame, and the
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Figure 4. Comparison of our solvers with previously proposed algorithms tested on synthetic data using random generalized camera

configurations. Increasing amounts of noise was added to the observations. One pixel corresponds to about 0.1 degrees.

ray between the camera center and the transformed point

(using the generated rotation and translation) is added as an

observation ray at the second time frame.

This setup tests multiple random multi-camera con-

figurations with reasonable depth from the cameras to

the observed points. For each algorithm tested we used

the minimal number of correspondences allowed: six for

Stewénius and our methods GB and Poly, seven for Kneip,

and seventeen for Linear 17 pt.. We use an extra correspon-

dence to disambiguate in the case of multiple solutions.

For each rotation magnitude in the range [0 15] degrees,

we generated 1000 random problems in the described man-

ner. Figure 3 plots the range of errors produced by each

solver in terms of rotation angular error, translation an-

gular error, and translation scale ratio (estimated / true).

Stewénius provides the lowest error at all rotation magni-

tudes, although the method is significantly slower than all

others. Linear 17 pt. also produces very low error, but it

is much more unstable with noise as will be seen in the fol-

lowing. Our GB and Poly methods produce comparable ac-

curacy to Stewénius and Linear 17 pt. with small rotation

magnitudes.

Kneip produced a high median error in all measures and

all rotation magnitudes. We suspect that this is due to the
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Figure 5. Estimated paths on KITTI odometry sequence 00 using

various methods compared to ground truth.

iterative optimization falling into local minima. This prob-

lem can be alleviated somewhat by using more correspon-

dences. However, our tests on real image sequences (see

following section) shows that the Kneip method works well

in practice in a random sampling loop, suggesting that ran-

dom sampling can overcome the instability of this method.

In a second test, we again generated 1000 random prob-

lems, but this time varied the amount of noise added to the

observations while keeping the rotation magnitude constant

at one degree. We added Gaussian noise with a standard de-

viation between zero and ten pixels. We used a focal length

of 600 pixels, so that one pixel corresponds to about 0.1 de-

grees. The results are plotted in Figure 4. As can be seen,

the accuracy of our methods (GB and Poly) is very sim-

ilar to Stewénius under these conditions, which resemble

real-world image observations. However, with noise added,

Linear 17 pt. produces much worse results than our meth-

ods.

We also tested our methods on synthetic data using an

axial camera configuration. We compared our solvers with

and without the modification for an axial camera configu-

ration. We did not find any difference in accuracy between

the two versions, and so conclude that the only effect of the

modification is a slight speedup.

4.3. Real Image Sequences

We tested our methods in comparison to the state-of-the-

art on two real image sequence datasets: the KITTI bench-

mark dataset [9] and the New Tsukuba stereo dataset [21].

Both datasets use a stereo camera configuration with left

and right cameras. Each sequence provides left and right

images at each capture point as well as ground truth posi-

tion and orientation data. Because both datasets use a stereo

camera configuration, we used the axial camera version of
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Figure 6. Estimated paths on New Tsukuba ‘fluorescent’ sequence

using various methods compared to ground truth.

our solvers in the tests.

Feature tracks were generated using the quad-matching

method of Geiger et al. [10]. This method applies corner de-

tection and performs a circular matching of features across

the stereo pairs at consecutive capture points. Matches

which are not consistent across all views or which stray too

far from the stereo epipolar lines are removed. Each quad-

match produces two intra-image correspondences and two

inter-image correspondences. Because of the known degen-

eracy with only intra-image correspondences and near-zero

rotation, we used all four correspondences in our tests.

For each sequence, we ran each relative pose solver in

a Preemptive RANSAC [23] loop on each consecutive pair

of stereo frames. Preemptive RANSAC is an alternative to

RANSAC [8] which is commonly used in visual odome-

try applications and on embedded platforms because it pro-

duces an essentially fixed computation time per frame [25].

Preemptive RANSAC first generates a fixed number of ran-

dom samples to compute hypotheses and then tests blocks

of observations while reducing the number of hypotheses

under consideration after each block tested. We used 200

samples and a block size of 100 observations. As a scoring

function to determine inliers, we used the re-projection er-

ror of the point as triangulated using the stereo baseline. In

all tests we used an inlier threshold of two pixels. The out-

put of Preemptive RANSAC is accepted if at least 40% of

matches are classified as inliers. The percentage of success-

ful frames, reported in the following results, is the percent-

age of frames in the sequence for which a particular solver

produced an acceptable solution.

We did not apply any non-linear refinement, multi-frame

bundle adjustment, or loop closure. Thus we tested purely

the frame-to-frame visual odometry component in order to

fairly compare the methods and not test the effects of re-
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Method GB (ours) Poly (ours) Kneip Stewénius Linear 17 pt.

Rotational error (deg) 0.07 0.07 0.07 0.08 0.10

Translational error (deg) 0.95 0.95 1.01 1.11 1.25

Translation scale (estimate/true) 1.00 1.00 1.00 1.00 1.00

Succesful frames (%) 99.98% 99.98% 99.98% 99.98% 99.98%

Table 2. Accuracy results on KITTI odometry sequence 00. The median for each error measure is given.

Method GB (ours) Poly (ours) Kneip Stewénius Linear 17 pt.

Rotational error (deg) 0.09 0.09 0.10 0.10 0.19

Translational error (deg) 6.22 6.25 7.50 7.19 13.04

Translation scale (estimate/true) 0.99 0.99 0.99 0.99 1.02

Successful frames (%) 99.33% 99.33% 99.28% 99.06% 97.33%

Table 3. Accuracy results on New Tsukuba ‘fluorescent’ sequence. The median for each error measure is given.

finement methods. The relative pose from each pair is ac-

cumulated in order to produce the continuous trajectory of

the camera rig over time.

KITTI Results from testing on KITTI sequence 00 are

shown in Table 2. This sequence has 4,541 stereo frames

captured from a moving vehicle with a GPS/IMU unit for

ground truth estimation. The video was recorded at 10 Hz

and exhibits frame-to-frame rotation of about five degrees

at maximum.

Our methods GB and Poly exhibit almost exactly the

same accuracy in terms of median error, and match or

outperform all other methods on all measures. The esti-

mated trajectories for KITTI sequence 00 are plotted with

ground truth in Figure 5. The trajectories for all methods

are roughly consistent. Because we are directly aggregat-

ing frame-to-frame relative pose measurements without any

post-refinement, there is significant accumulation of drift.

New Tsukuba Results from testing on the New Tsukuba

‘fluorescent’ sequence are shown in Table 3 and estimated

trajectories are plotted in Figure 6. The New Tsukuba se-

quences were generated using photorealistic rendering of a

highly detailed, 3D office scene model. While the KITTI

dataset exhibits primarily forward and turning motion, the

New Tsukuba sequence has more significant horizontal and

vertical movement in addition to forward and turning mo-

tion.

Again, our methods match or outperform all other meth-

ods on all accuracy measures. The error in translation di-

rection is significantly higher for all methods on this se-

quence in comparison to KITTI. We believe this is due to

two reasons: the translational movement between succes-

sive frames is much smaller for this sequence, and the image

resolution is also much smaller (640×480 versus 1241×376
for KITTI). It is well-known that translation estimation be-

comes unstable when the translation magnitude is small and

thus induces little feature movement. This problem is com-

pounded by the low image resolution of the dataset.

5. Discussion

Our evaluations show that our methods outperform state-

of-the-art methods in accuracy on real-world image se-

quences while being faster to compute. Our GB method

shows a speedup of about 50× over the method of

Stewénius, while returning fewer solutions, and has about

the same computation time as Kneip with better stabil-

ity. Our Poly method shows a speedup of 123× over

Stewénius and about 2.7× over Kneip while having the

same accuracy and stability as our GB method.

Although in our synthetic tests, we tested rotation mag-

nitudes of up to fifteen degrees, the practical applications

we envision – such as car or aerial vehicle motion with at

least a 10 Hz frame rate – typically will not exhibit frame-

to-frame rotation beyond five degrees.

6. Conclusions and Future Work

By using a first-order approximation to relative pose, we

achieved efficient and direct solutions to multi-camera rela-

tive pose which do not require iterative optimization and are

almost completely closed form. Our novel solutions are as

fast or faster than the state-of-the-art while providing better

stability and comparable accuracy for motion estimation2.

Future work includes real-time implementation for on-

line ego-motion estimation in a mobile embedded system

and application of our solution procedure to other related

geometric problems.
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