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Abstract

Detecting poorly textured objects and estimating their

3D pose reliably is still a very challenging problem. We

introduce a simple but powerful approach to computing de-

scriptors for object views that efficiently capture both the

object identity and 3D pose. By contrast with previous

manifold-based approaches, we can rely on the Euclidean

distance to evaluate the similarity between descriptors, and

therefore use scalable Nearest Neighbor search methods to

efficiently handle a large number of objects under a large

range of poses. To achieve this, we train a Convolutional

Neural Network to compute these descriptors by enforcing

simple similarity and dissimilarity constraints between the

descriptors. We show that our constraints nicely untangle

the images from different objects and different views into

clusters that are not only well-separated but also structured

as the corresponding sets of poses: The Euclidean distance

between descriptors is large when the descriptors are from

different objects, and directly related to the distance be-

tween the poses when the descriptors are from the same

object. These important properties allow us to outperform

state-of-the-art object views representations on challenging

RGB and RGB-D data.

1. Introduction

Impressive results have been achieved in 3D pose estima-

tion of objects from images during the last decade. How-

ever, current approaches cannot scale to large-scale prob-

lems because they rely on one classifier per object, or multi-

class classifiers such as Random Forests, whose complexity

grows with the number of objects. So far the only recog-

nition approaches that have been demonstrated to work on

large scale problems are based on Nearest Neighbor (NN)

classification [23, 16, 8], because extremely efficient meth-

ods for NN search exist with an average complexity of

O(1) [24, 21]. Moreover, Nearest Neighbor (NN) classi-

fication also offers the possibility to trivially add new ob-

jects, or remove old ones, which is not directly possible with

neural networks, for example. However, to the best of our

knowledge, such an approach has not been applied to the

3D pose estimation problem, while it can potentially scale

to many objects seen under large ranges of poses. For ex-

ample, [8] only focuses on object recognition without con-

sidering the 3D pose estimation problem.

For NN approaches to perform well, a compact and dis-

criminative description vector is required. Such representa-

tions that can capture the appearance of an object under a

certain pose have already been proposed [7, 14], however

they have been handcrafted. Our approach is motivated by

the success of recent work on feature point descriptor learn-

ing [5, 35, 20], which shows that it is possible to learn com-

pact descriptors that significantly outperform handcrafted

methods such as SIFT or SURF.

However, the problem we tackle here is more complex:

While feature point descriptors are used only to find the

points’ identities, we here want to find both the object’s

identity and its pose. We therefore seek to learn a descrip-

tor with the two following properties: a) The Euclidean dis-

tance between descriptors from two different objects should

be large; b) The Euclidean distance between descriptors

from the same object should be representative of the sim-

ilarity between their poses. This way, given a new object

view, we can recognize the object and get an estimate of its

pose by matching its descriptor against a database of regis-

tered descriptors. New objects can also be added and exist-

ing ones removed easily. To the best of our knowledge, our

method is the first one that learns to compute descriptors for

object views.

Our approach is related to manifold learning, but the key

advantage of learning a direct mapping to descriptors is that

we can use efficient and scalable Nearest Neighbor search

methods. This is not possible for previous methods relying

on geodesic distances on manifolds. Moreover, while pre-

vious approaches already considered similar properties to

a) and b), to the best of our knowledge, they never consid-

ered both simultaneously, while it is critical for efficiency.

Combining these two constraints in a principled way is far

from trivial, but we show it can be done by training a Con-

volutional Neural Network [18] using simple constraints to

compute the descriptors. As shown in Fig. 1, this results in



Figure 1. Three-dimensional descriptors for several objects under many different views computed by our method on RGB-D data. Top-left:

The training views of different objects are mapped to well-separated descriptors, and the views of the same object are mapped to descriptors

that capture the geometry of the corresponding poses, even in this low dimensional space. Top-right: New images are mapped to locations

corresponding to the object and 3D poses, even in the presence of clutter. Bottom: Test RGB-D views and the RGB-D data corresponding

to the closest template descriptor.

a method that nicely untangles the views of different objects

into descriptors that capture the identities and poses of the

objects.

We evaluate our approach on instance recognition and

pose estimation data with accurate ground truth and show

significantly improved results over related methods. Addi-

tionally we perform experiments assessing the ability of the

method to generalize to unseen objects showing promising

results.

2. Related Work

Our work is related to several aspects of Computer Vi-

sion, and we focus here on the most relevant and represen-

tative work. Our approach is clearly in the framework of

2D view specific templates [15], which is conceptually sim-

ple, supported by psychophysical experiments [33], and was

successfully applied to various problems and datasets over

the last years [22, 19, 13, 11, 8, 28].

However, most of these works rely on handcrafted rep-

resentations of the templates, for example HOG [7] or

LineMOD [14]. In particular, LineMOD was designed ex-

plicitly in the context of object detection and pose estima-

tion. However these handcrafted representations are subop-

timal compared to statistically learned features. [19, 11, 28]

show how to build discriminative models based on these

representations using SVM or boosting applied to training

data. [19, 28] do not consider the pose estimation problem,

while [11] focuses on this problem only, with a discrimina-

tively trained mixture of HOG templates. Exemplars were

recently used for 3D object detection and pose estimation

in [1], but still rely on a handcrafted representation.

As mentioned in the introduction, our work is influenced

by work developed for keypoint descriptor learning. Some

of these methods are applied to existing descriptors to make

them more discriminative, such as in [10, 31], but others are

trained directly on image data. [5] introduces datasets made

of “positive pairs” of patches corresponding to the same

physical points and “negative pairs” of patches correspond-

ing to different points. It is used for example in [35] to learn

a binary descriptor with boosting. [20] uses a “siamese” ar-

chitecture [6] to train a neural network to compute discrimi-

native descriptors. Our approach is related to this last work,

but the notion of pose is absent in their case. We show how

to introduce this notion by using triplets of training exam-

ples in addition to only pairs.

Instead of relying on rigid templates as we do, many

works on category recognition and pose estimation rely

on part-based models. [30] pioneered this approach, and
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learned canonical parts connected by a graph for object

recognition and pose estimation. [26] extends the De-

formable Part Model to 3D object detection and pose es-

timation. [25] uses contours as parts. One major drawback

of such approaches is that the complexity is typically linear

with the number of objects. It is also not clear how impor-

tant the “deformable” property really is for the recognition,

and rigid templates seem to be sufficient [9].

Our approach is also related to manifold learning [27].

For example, [29] learns an embedding that separates ex-

tremely well the classes from the MNIST dataset of digit

images, but the notion of pose is absent. [12] learns either

for different classes, also on the MNIST dataset, or for vary-

ing pose and illumination, but not the two simultaneously.

More recently, [2] proposes a method that separates mani-

folds from different categories while being able to predict

the object poses, and also does not require solving an infer-

ence problem, which is important for efficiency. However, it

relies on a discretisation of the pose space in a few classes,

which limits the possible accuracy. It also relies on HOG

for the image features, while we learn the relevant image

features.

Finally, many works focus as we do on instance recog-

nition and pose estimation, as it has important applications

in robotics for example. [14] introduced LineMOD, a fast

but handcrafted presentation of template for dealing with

poorly textured objects. The very recent [4, 34] do not

use templates but rely on recognition of local patches in-

stead. However they were demonstrated on RGB-D images,

and local recognition is likely to be much more challenging

on poorly textured objects when a depth information is not

available. [17] also expects RGB-D images, and uses a tree

for object recognition, which however still scales linearly in

the numbers of objects, categories, and poses.

3. Method

Given a new input image x of an object, we want to cor-

rectly predict the object’s class and 3D pose. Because of the

benefits discussed above, such as scalability and ability to

easily add and remove objects, we formulate the problem as

a k-nearest neighbor search in a descriptor space: For each

object in the database, descriptors are calculated for a set of

template views and stored along with the object’s identity

and 3D pose of the view. In order to get an estimate for the

class and pose of the object depicted in the new input im-

age, we can compute a descriptor for x and search for the

most similar descriptors in the database. The output is then

the object and pose associated with them.

We therefore introduce a method to efficiently map an

input image to a compact and discriminative descriptor that

can be used in the nearest neighbor search according to the

Euclidean distance. For the mapping, we use a Convolu-

tional Neural Network (CNN) that is applied to the raw im-

age patch as input and delivers the descriptor as activations

of the last layer in one forward pass.

We show below how to train such a CNN to enforce the

two important properties already discussed in the introduc-

tion: a) The Euclidean distance between descriptors from

two different objects should be large; b) The Euclidean dis-

tance between descriptors from the same object should be

representative of the similarity between their poses.

3.1. Training the CNN

In order to train the network we need a set Strain of train-

ing samples, where each sample s = (x, c, p) is made of an

image x of an object, which can be a color or grayscale im-

age or a depth map, or a combination of the two; the identity

c of the object; and the 3D pose p of the object relative to

the camera.

Additionally, we define a set Sdb of templates where each

element is defined in the same way as a training sample. De-

scriptors for these templates are calculated and stored with

the classifier for k-nearest neighbor search. The template

set can be a subset of the training set, the whole training

set or a separate set. Details for the creation of training and

template data are given in the implementation section.

3.2. Defining the Cost Function

We argue that a good mapping from the images to the de-

scriptors should be so that the Euclidean distance between

two descriptors of the same object and similar poses are

small and in every other case (either different objects or

different poses) the distance should be large. In particu-

lar, each descriptor of a training sample should have a small

distance to the one template descriptor from the same class

with the most similar pose and a larger distance to all de-

scriptors of templates from other classes, or the same class

but less similar pose.

We enforce these requirements by minimizing the fol-

lowing objective function over the parameters w of the

CNN:

L = Ltriplets + Lpairs + λ||w′||
2
2 . (1)

The last term is a regularization term over the parameters of

the network: w′ denotes the vector made of all the weights

of the convolutional filters and all nodes of the fully connect

layers, except the bias terms. We describe the first two terms

Ltriplets and Lpairs below.

3.2.1 Triplet-wise terms

We first define a set T of triplets (si, sj , sk) of training sam-

ples. Each triplet in T is selected such that one of the two

following conditions is fulfilled:

• either si and sj are from the same object and sk from

another object, or
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• the three samples si, sj , and sk are from the same ob-

ject, but the poses pi and pj are more similar than the

poses pi and pk.

These triplets can therefore be seen as made of a pair of

similar samples (si and sj) and a pair of dissimilar ones (si
and sk). We introduce a cost function for such a triplet:

c(si, sj , sk) = max

(

0, 1−
||f

w
(xi)− f

w
(xk)||2

||f
w
(xi)− f

w
(xj)||2 +m

)

,

(2)

where f
w
(x) is the output of the CNN for an input image x

and thus our descriptor for x, and m is a margin. We can

now define the term Ltriplets as the sum of this cost function

over all the triplets in T :

Ltriplets =
∑

(si,sj ,sk)∈T

c(si, sj , sk) . (3)

It is easy to check that minimizing Ltriplets enforces our two

desired properties in one common framework.

The margin m serves two purposes. First, it introduces a

margin for the classification. It also defines a minimum ratio

for the Euclidean distances of the dissimilar pair of samples

and the similar one. This counterbalances the weight regu-

larization term, which naturally contracts the output of the

network and thus the descriptor space. We set m to 0.01 in

all our experiments.

The concept of forming triplets from similar and

dissimilar pairs is adopted from the field of metric

learning, in particular, the method of [37], where it

is used to learn a Mahalanobis distance metric. Note

also that our definition of the cost is slightly differ-

ent from the one in [36], which uses c(si, sj , sk) =

max
(

0,m+ ||f
w
(xi)− f

w
(xj)||

2
2 − ||f

w
(xi)− f

w
(xk)||

2
2

)

,

where m is set to 1. Our formulation does not suffer from

a vanishing gradient when the distance of the dissimilar

pair is very small (see suppl. material). Also the increase

of the cost with the distance of the similar pair is bounded,

thus putting more focus on local interactions. In practice,

however, with proper initialization and selection of m both

formulations deliver similar results.

3.2.2 Pair-wise terms

In addition to the triplet-wise terms, we also use pair-wise

terms. These terms make the descriptor robust to noise and

other distracting artifacts such as changing illumination. We

consider the set P of pairs (si, sj) of samples from the same

object under very similar poses, ideally the same, and we

define the Lpairs term as the sum of the squared Euclidean

distances between the descriptors for these samples:

Lpairs =
∑

(si,sj)∈P

||f
w
(xi)− f

w
(xj)||

2
2 . (4)

64x64xC

input conv+max pool

28x28x16

16 x 8x8xC

conv+max pool

7 x 5x5x16

12x12x7 256

fully con. fully con.

descriptor size

Figure 2. Network structure: We use a CNN made of two convo-

lutional layers with subsequent 2× 2 max pooling layers, and two

fully connected layers. The activations of the last layer form the

descriptor for the input image.

This term therefore enforces the fact that for two images

of the same object and same pose, we want to obtain two de-

scriptors which are as close as possible to each other, even

if they are from different imaging conditions: Ideally we

want the same descriptors even if the two images have dif-

ferent backgrounds or different illuminations, for example.

As will be discussed in more detail in Section 4.1, this also

allows us to use a mixture of real and synthetic images for

training.

Note that we do not consider dissimilar pairs unlike work

in keypoint descriptors learning for example. With dissimi-

lar pairs the problem arises how strong to penalize a certain

distance between the two samples, given their individual la-

bels. Using triplets instead gives the possibility to only con-

sider relative dissimilarity.

3.3. Implementation Aspects

The exact structure of the network we train to compute

the descriptors is shown in Figure 2. It consists of two lay-

ers that perform convolution of the input with a set of filters,

max-pooling and sub-sampling over a 2× 2 area and a rec-

tified linear (ReLU) activation function, followed by two

fully connected layers. The first fully connected layer also

employs a ReLU activation, the last layer has linear output

and delivers the final descriptor.

We optimize the parameters w of the CNN by Stochastic

Gradient Descent on mini-batches with Nesterov momen-

tum [32]. Our implementation is based on Theano [3].

The implementation of the optimization needs some spe-

cial care: Since we are working with mini-batches, the data

corresponding to each pair or triplet has to be organized

such as to reside within one mini-batch. The most straight-

forward implementation would be to place the data for each

pair and triplet after each other, calculate the resulting gra-

dient wrt. the network’s parameters individually and sum

them up over the mini-batch. However, this would be inef-

ficient since descriptors for templates would be calculated

multiple times if they appear in more than one pair or triplet.
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To assemble a mini-batch we start by randomly taking

one training sample from each object. Additionally, for

each of them we add its template with the most similar pose,

unless it was already included in this mini-batch. This is it-

erated until the mini-batch is full. However, this procedure

can lead to very unequal numbers of templates per object

if, for instance, all of the selected training samples have the

same most similar template. We make sure that for each ob-

ject at least two templates are included by adding a random

one if necessary. Pairs are then formed by associating each

training sample with its closest template. Additionally, for

each training sample in the mini-batch we initially create

three triplets. In each of them the similar template is set to

be the one with the closest pose and the dissimilar sample

is either another, less similar template from the same object

or any template of a different object.

During the optimization, after the first set of epochs, we

perform boot-strapping of triplets within each mini-batch to

focus on the difficult samples: For each training sample we

add two additional triplets. The similar template is again

the closest one. The dissimilar ones are those templates that

currently have the closest descriptors, one from the same

object but different pose and one from all the other objects.

Another aspect to take care of is the fact that the ob-

jective function must be differentiable with respect to the

parameters of the CNN, while the derivative of the square

root—used in the triplet-wise cost—is not defined for a dis-

tance of 0. Our solution is to add a small constant ǫ before

taking the square root. Another possible approach [36] is

to take the square of the norm. However, this induces the

problem (mentioned in Section 3.2.1) that for very small

distances of the dissimilar pair, the gradient becomes very

small and vanishes for zero distance.

4. Evaluation

We compare our approach to LineMOD and HOG on the

LineMOD dataset [13]. This dataset contains training and

test data for object recognition and pose estimation of 15

objects, with accurate ground truth. It comes with a 3D

mesh for each of the objects. Additionally, it also provides

sequences of RGB images and depth maps recorded with a

Kinect sensor.

4.1. Dataset Compilation

We train a CNN using our method on a mixture of syn-

thetic and real world data. As in [14], we create synthetic

training data by rendering the mesh available for each of the

objects in the dataset from positions on a half-dome over

the object, as shown in Fig. 1 on the left. The viewpoints

are defined by starting with a regular icosahedron and re-

cursively subdividing each triangle into 4 sub-triangles. For

the template positions the subdivison is applied two times.

After removing the lower half-sphere we end up with 301

evenly distributed template positions. Additional training

data is created by subdividing one more time, resulting in

1241 positions.

From each pose we render the object standing on a plane

over an empty background using Blender1. We parameter-

ize the object pose with the azimuth and elevation of the

camera relative to the object. We store the RGB image as

well as the depth map.

For the real world data we split the provided sequences

captured with the Kinect randomly into a training and a test

set. We ensure an even distribution of the samples over

the viewing hemisphere by taking two real world images

close to each template, which results roughly in a 50/50 split

of the data into training and test. Preliminary experiments

showed very little to no variance over the different train/test

splits and, thus, all results presented here report runs on one

random split, fixed for each experiment.

The whole training data set is augmented by making

multiple copies with added noise. On both RGB and depth

channel we add a small amount of Gaussian noise. Addi-

tionally, for the synthetic images, we add larger fractal noise

on the background, to simulate diverse backgrounds.

Note that the template views, which are ultimately used

in the classification are purely synthetic and noise-free ren-

derings on clean backgrounds. The algorithm, thus, has to

learn to map the noisy and real world input data to the same

location in descriptor space as the clean templates.

As pointed out in [14] some of the objects are rotation-

ally invariant, to different degrees. Thus, the measure of

similarity of poses used for the evaluation and, in our case

to define pairs and triplets, should not consider the azimuth

of the viewing angle for those objects. We treat the bowl

object as fully rotationally invariant. The classes eggbox,

glue are treated as symmetric, meaning a rotation by 180◦

around the z-axis shows the same pose again. The cup is a

special case because it looks the same from a small range of

poses, but from sufficient elevation such that the handle is

visible, the exact pose could be estimated. We also treat it

as rotationally invariant, mainly to keep the comparison to

LineMOD fair.

We extract a patch centered at the object and capturing

a fixed size window in 3D at the distance of the object’s

center. In order to also address the detection part in a sliding

window manner, it would be necessary to extract and test

several scales. However, only a small range of scales needs

to be considered, starting with a maximal one, defined by

the depth at the center point, and going down until the center

of the object is reached.

Before applying the CNN we normalize the input im-

ages. RGB images are normalized to the usual zero mean,

unit variance. For depth maps we subtract the depth at the

center of the object, scale down such that 20cm in front and

1http://www.blender.org
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behind the object’s center are mapped to the range of [−1, 1]
and clip everything beyond that range.

The test sequences captured with the Kinect are very

noisy. In particular, there are many regions with undefined

depth, introducing very large jumps for which the convolu-

tional filters with ReLU activation functions might output

overly strong output values. Therefore, we pre-process the

test data by iteratively applying median filters in a 3 × 3
neighborhood, but only on the pixels for which the depth is

available, until all gaps are closed.

4.2. Network Optimization

For the optimization we use the following protocol: We

initially train the network on the initial dataset for 400

epochs, an initial learning rate of 0.01 and a momentum

of 0.9. Every 100 epochs the learning rate is multiplied by

0.9. Then we perform two rounds of bootstrapping triplet

indices as explained in Section 3.3, and for each round we

train the CNN for another 200 epochs on the augmented

training set. In the end we train another 300 epochs with the

learning rate divided by 10 for final fine-tuning. The regu-

larization weight λ is set to 10−6 in all our experiments.

4.3. LineMOD and HOG

We compare our learned descriptors to the LineMOD

descriptor and HOG as a baseline, as it is widely used as

representation in the related work. For LineMOD we use

the publicly available source code in OpenCV. We run it

on the same data as our method, except for the median fil-

ter depth inpainting and normalization: LineMOD handles

the missing values internally and performed better without

these pre-processing operations.

For HOG we also use the publicly available implemen-

tation in OpenCV. We extract the HOG descriptors from the

same data we use with our CNN. We use a standard setup

of a 64× 64 window size, 8× 8 cells, 2× 2 cells in a block

and a block stride of 8, giving a 1764-dimensional descrip-

tor per channel. We compute descriptors on each RGB and

depth channel individually and stack them. For evaluation

we normalize all descriptors to length 1 and take the dot

product between test and template descriptors as similarity

measure.

4.4. Manifolds

Figure 1 plots the views of three objects after being

mapped into 3-dimensional descriptors, for visualization

purposes. As can be seen, not only the descriptors from the

different objects are very well separated, but they also cap-

ture the geometry of the corresponding poses. This means

that the distances between descriptors is representative of

the distances between the corresponding poses, as desired.

For longer descriptors we show an evaluation of the re-

lation between distances of descriptors and similarity be-

tween poses in Figure 3. For each object, we computed

the distances between every sample in the test set and every

template for the same object in the training set, as well as the

angles between their poses. We then plot a two-dimensional

histogram over these angle/distance pairs. Correlation be-

tween small angles and large distances indicates the risk of

missed target templates, and correlation between large an-

gles and small distances the risk of incorrect matches. Ide-

ally the histograms should therefore have large values only

on the diagonal.

The histograms for the descriptors computed with our

method clearly show that the distance between descriptors

increase with the angle between the views, as desired, while

the histograms for LineMOD and HOG show that these de-

scriptors are much more ambiguous.

Additionally, the ability of the descriptors to separate the

different classes is evaluated in Figure 4. For every test sam-

ple descriptor we compute the distance to the closest tem-

plate descriptor of the same object and the closest from any

other object and plot a histogram over those ratios. Clearly,

descriptors obtained with our method exhibit a larger ratio

for most samples and thus separate the objects better.

4.5. Retrieval Performance

What we ultimately want from the descriptors is that

nearest neighbors are from the same class and have similar

poses. In order to evaluate the performance we thus perform

the following comparisons.

The scores reported for LineMOD in [14] represent the

accuracy of the output of the whole processing pipeline, in-

cluding the descriptor calculation, retrieval of similar tem-

plates, pruning the set with heuristics and refinement of the

pose for a set of candidate matches by aligning a voxel

model of the object. The contribution of this work is to

replace the descriptors for the retrieval of templates with

similar pose. Thus, we evaluate and compare this step in

separation of the rest of the pipeline.

Evaluation Metric For each test sample we consider the

k-nearest neighbors according to the descriptors and simi-

larity metric of each method, the Euclidean distance in our

case, the dot product for HOG, and the matching score of

LineMOD. Among those k nearest templates we search for

the one with the best closest pose to the test sample’s pose,

assuming that this one would perform best in the subsequent

refinement process and thus finally be selected. The pose

error is measured by the angle between the two positions

on the viewing half-sphere. We define the accuracy as the

percentage of test images for which the best angle error is

below a certain threshold. The minimum angle error for

which perfect accuracy can theoretically be reached is 5◦,

because that is the maximal distance of a test image to its

closest template.
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(a) ours (b) LineMOD (c) HOG

Figure 3. Histograms of the correlations between Pose Similarity (x-axis) and Descriptor Distance (y-axis) for each of the 15 objects of

the LineMOD dataset on RGB-D data, as described in Section 4.4. Distances in the descriptor space are much more representative of the

similarity between poses with our method than with LineMOD or HOG.
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(b) RGB
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Figure 4. Evaluation of the class separation, over the 15 objects of the LineMOD dataset. The histograms plot the ratios between the

distance to the closest template from the correct object and the distance to the closest template from any other object, for depth, RGB, and

RGB-D data. Ratios above 4 are clipped; the y-axis is scaled logarithmically. Our method has considerably fewer samples for which the

ratio is below one, which indicates less confusion between the objects.

Descriptor Length In Figure 5 we evaluate the influence

of the length of the descriptors learned on depth data. As

can be seen the maximal performance is already reached

with a 16 dimensional descriptor, while the length of the

HOG descriptor is 1764. Thus, we use a 16 dimensional

descriptor for all of the following experiments, including

for the RGB and RGB-D data.

Results We evaluate all three approaches on depth, RGB,

and RGB-D data. Figure 6 and Table 1 summarize the re-

sults. For depth maps, results are shown in Figure 6 (a).

When only considering 1 nearest neighbor we achieve

a recognition rate of 98.1%, as opposed to the 69.5%
achieved by the LineMOD descriptor and a pose error of

less than 20◦ for 94.7% of the test samples (59.3% for

LineMOD). Figure 6 (b) shows results for training and test-

ing on color images. While both LineMOD and HOG can-

not reach the performance they obtain on the depth data on

RGB alone, our descriptor performs almost identically in

this setup. Finally, Figure 6 (c) shows results for training

and testing on the combination of color images and depth

0 10 20 30 40 50 60 70
descriptor length

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
U

C

k = 1
k = 4
k = 7
k = 10
k = 13
k = 16
k = 19
k = 22

Figure 5. Evaluation of the descriptor length on depth data. Only

16 values are sufficient to reliably represent an object view, after

which the performance plateaus.

maps. While LineMOD takes advantage of the combina-

tion of the two modalities, it is clearly outperformed by our

descriptor, as taking the single nearest neighbor exhibits a

pose error below 20◦ for 96.2% of the test samples and an

overall recognition rate of 99.8%, an almost perfect score.
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(b) RGB
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(c) RGB-D

Figure 6. Performance evaluation and comparison to LineMOD and HOG on all 15 objects of the LineMOD dataset and depth, RGB, and

RGB-D data. Each graph plots the accuracy over the y-axis for given a maximal allowed error of the resulting object’s pose on the x-axis.

Curves for different k are computed by taking k-nearest neighbors and selecting the one with the best matching pose. For our method, the

descriptor length was set to 32 for depth, RGB, and RGB-D data. HOG uses 1764 values per channel, and LineMOD uses a length of 63

for depth and RGB data, and of 126 for RGB-D data.

Depth RGB RGB-D

k 5
◦

20
◦

40
◦

180
◦

5
◦

20
◦

40
◦

180
◦

5
◦

20
◦

40
◦

180
◦

ours 1 54.4 94.7 96.9 98.1 53.4 93.7 97.0 99.1 57.1 96.2 98.7 99.8

LineMOD 1 25.1 59.3 65.4 69.5 18.8 36.8 41.9 49.6 37.5 71.8 77.4 83.7

HOG 1 21.7 52.7 54.9 55.3 13.5 29.6 31.5 33.6 23.5 43.5 44.9 46.2

ours 22 98.2 99.4 99.5 99.6 98.2 99.5 99.6 99.7 99.0 99.9 99.9 99.9

LineMOD 22 75.0 87.9 88.8 89.5 55.2 74.0 79.3 83.5 81.9 92.0 94.3 96.4

HOG 22 59.5 67.7 68.5 68.9 40.5 47.8 49.0 50.9 51.1 56.3 56.8 57.5

Table 1. Performance comparison to LineMOD and HOG on all 15 objects of the LineMOD dataset and depth, RGB, and RGB-D data,

for several tolerated angle errors. Our method systematically outperforms the other representations. The value at 180◦ indicates the object

recognition rate when the pose is ignored.

4.6. Generalization

As a last experiment, we show that our descriptor can

generalize to unseen objects. This evaluation was per-

formed using depth only. To do so, we train the CNN on

14 out of the 15 objects. We then perform the evaluation

just as above by computing descriptors for the new object.

As can be seen from the histogram of Fig. 7-left, our method

generalizes well to this unseen object. The overall perfor-

mance rate is slightly reduced since the network could not

learn the subtle differences between the unseen object and

the others. Most of the miss-classifications are with the ape,

whose shape looks similar to the duck’s under some view-

points, as shown in Fig. 7-right.

5. Conclusion

We have shown how to train a CNN to map raw input im-

ages from different input modalities to very compact output

descriptors using pair-wise and triplet-wise constraints over

training data and template views. Our descriptors signifi-

cantly outperform LineMOD and HOG, which are widely

used for object recognition and 3D pose estimation, both

in terms of accuracy and descriptor length. Our represen-

Figure 7. Generalization to objects not seen during training. Left:

Histogram of correlation between Pose Similarity and Descriptor

Distance for the duck that was not included during training for this

experiment. The recognition rate is only slightly reduced com-

pared to when the duck is used during training. Right: Difficult

examples of correct and mis-classifications. The duck is mostly

confused with the ape, which looks similar in the depth image un-

der some angles.

tation therefore replaces them advantageously. Tests on the

capability to generalize to unseen objects also have shown

promising results. For further investigation we will make

our code available upon request.
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